Research Statement - Will Crichton

b(crate) fn transfer_function((
h=3 f=6 [CHI"21] " -
X Stack Heap Stack Heap
j=4 r=7 main e main s mutaftions: Vec<Mutation<'tox>>
vec o I vec ,
r=1 y =3 num e num @)
T— debug! (" Applying mutations {mutations:?}")
b=24 a=7
undefined behavior: pointer used
f=h b g=y - a after its pointee is freed
stack Heap let mut all_deps = {
t=f j o=r-f main 1234
vee 'f I vec! [deps; mutations.len()] 1
e=r-t d=q+o0 wun|@ [OOPSLA23] - [PLDI'22]
Str N N "
Program DP"’);"S Pstths‘lrmgAPIs,such "Hello [POPL'24] let mut v = vec![1, 2, 3]; T-AsSIGNDEREF [PLDI'22]
= as Javascript “— v 1 +R+W +0 SAT;0re: 1) ok = [0, ATy Famg Pt
Template | Dy,3" | Cprintf, Python f-strings, I 5 - . ’
Literal Jovascipt templte ltral | 2% vorld = orld’; let n = &ev[2]; SIXW B ATy Funig p = {1} ATirr) s =T
. —i Vv - .
- Perlinterpolated strings 0, =0,V “p’ € {I} . update-conflicts (©1, p’, k)]
Template z)Wm: C preprocessor, PHP, La- o . n 4+ -+0 -
; {% set world = "World" %} AT —p . H -0,
Program X, Tk (o) Liid | (0 28 [OOPSLA'23] *n 1R - - TAT;0Fpi=e:unite s =T > p;0,

All people should be able to program, and all programmers should be able to build complex software. How-
ever, computational literacy today is like textual literacy in antiquity; just as reading was the exclusive skill
of the ancient privileged castes, so too is programming the exclusive skill of 1% of today’s population. The
number of programmers who can build reliable software systems or analyze massive datasets is vanishingly
small. My mission is to empower people to tackle programming problems at all levels of complexity.

My approach is to build systems that amplify the intelligence of programmers, in the sense used by
computing pioneers like Bush [1], Engelbart [8], and Licklider [9]. I identify core cognitive tasks that are a
challenging part of routine programming, and I design systems to support people in accomplishing those
tasks. To both ground my ideas and maximize my impact, I work within programmer communities that
apply cutting-edge tools to design complex software, with my current focus being on Rust, a language for
safe systems programming. Specifically, I have developed tools to help Rust programmers:

« Find relevant code by visualizing dependencies in the IDE [7] (top-right), used by 5,000+ Rust developers.
« Learn Rust with novel conceptual models of its key features [5] (center), used by 60,000+ Rust learners.

« Learn APIs by linking documentation with examples [2, 3], merged into Rust and used by 100+ libraries.

It is difficult to design effective systems for intelligence amplification with intuition alone. People are
hard to predict, and programs are hard to analyze. In my research, I seek to build theories as much as
systems; to contribute to a shared foundation of knowledge about how programs works (programming
language theory) and how people program (cognitive psychology). For example:

« Iran four experiments to understand how working memory influences program comprehension [4] (top-
left), which motivated my work on visualizing dependencies to overcome working memory limitations.

« I formalized my static dependency analysis for Rust (bottom-right) and demonstrated its correctness by
proving a key theorem, termination-insensitive non-interference [7].

+ I designed a formal semantics for document languages to provide a precise theoretical foundation for
my ongoing work in designing a successor to LaTeX [6] (bottom-left).

Overcoming Working Memory Limitations with Information Flow Analysis

Intelligence amplification requires an understanding of programmer cognition. So my thesis work started
with the question: which psychological theories can make concrete predictions about how people perform
programming tasks? After reviewing the literature on applied cognitive psychology, I found a common
theme: working memory, or the cognitive capacity for processing information in the short-term. The key
finding is that working memory has a universally limited capacity of 7-ish “chunks” of information. I
asked: how would a programmer’s working memory affect their ability to perform programming tasks?

https://rust-lang.org/

“The Role of Working Memory in Program Tracing” (CHI 2021, [4]) reports on four experiments ex-
amining the limits of human performance in a straightforward programming task: tracing, or mentally
simulating a program’s behavior. When given a simple program like “x=8; y=2; z=4" and then asked
the value of y (i.e., a paired-associate cued recall task), we found that most participants started to make
errors after about 7 variables, consistent with working memory theory. More interestingly, we asked par-
ticipants to trace a program with an accumulating dependency structure like “x=8; y=x+2; z=y-1; ...”
We designed an interface to track a participant’s attention by blurring-out code not under the participant’s
cursor. We found evidence for two distinct tracing strategies: reading “linearly” top-down and reading “on-
demand” in reverse dependency order. These strategies corresponded to distinct working memory errors:
forgetting the value of a variable, and forgetting the location of a prior computation. Overall, the exper-
iments showed that a programmer’s working memory severely limits their ability to mentally maintain
program state, and the nature of that state depends on the programmer’s chosen strategy.

This result motivated the question: how can tools amplify a programmer’s working memory to over-
come these limitations? IDEs provide some support with features like “Jump to Definition”, but they pro-
vide no support for following the full dependency structure of a computation. This task has historically
been the domain of program slicing — yet despite decades of work, no slicer is in widespread use today. So
I focused on developing a new program slicer with two criteria: (1) the analysis is practical enough to run
on large codebases, and (2) the interface provides cognitive support for program comprehension tasks.

“Modular Information Flow through Ownership” (PLDI 2022, [7]) describes a practical static slicer for
Rust, or more generally for computing information flow in Rust (of which slicing is a special case). The key
insight is that both alias analysis and mutation analysis can be made modular by careful use of the Rust
type system. Our algorithm can analyze flows through function calls only using ownership annotations
on the type signature, without needing the function body itself. To evaluate soundness, we proved that
this approximation satisfies termination-insensitive non-interference within a formal model of safe Rust.
To evaluate precision, we analyzed ~ 400,000 lines of Rust code and found that this approximation is
equivalent to a whole-program analysis in 94% of cases, meaning that little precision is lost. The modular
information flow algorithm is publicly available as the Flowistry tool (willcrichton/flowistry).

Flowistry is supporting two ongoing research projects. First, I developed an IDE tool that interac-
tively visualizes Flowistry’s output as program slices, which has been used by over 5,000 Rust developers
to date. I am running experiments to study how Flowistry influences a developer’s process of compre-
hending code. Second, I am working with colleagues at Brown to use Flowistry as the foundation for
Paralegal (brownsys/paralegal), an IFC system that can identify security violations in Rust codebases.

Teaching Ownership Types at Scale

Another key cognitive task for all programmers is learning — a particular problem for Rust, whose combi-
nation of concepts from functional and systems programming is notoriously difficult to master. During my
postdoc, I set out to systematically improve Rust’s learning curve by developing an experimental platform
for teaching Rust at scale. The Rust Book Experiment (rust-book.cs.brown.edu) is a fork of The Rust Pro-
gramming Language, the Rust community’s official textbook. The key idea is to embed interactive quizzes
within the book. Learners benefit because the quizzes help them engage with the material. We benefit
by collecting large quantities of data about which parts of Rust are hardest to learn. Over the last year,
60,000+ people have answered quiz questions over 1,000,000 times using our platform.

“A Grounded Conceptual Model for Ownership Types in Rust” (OOPSLA 2023, [5]) describes one part of
this experiment focused on ownership. We first ran a formative study with 36 Rust learners who answered
open-ended problems about ownership. We found that learners could recognize the surface reason for
why a program is rejected (e.g., there are two mutable references to the same data), but they could not
articulate the underlying reason (e.g,. with a particular input, the code would have undefined behavior).

https://github.com/willcrichton/flowistry
https://github.com/brownsys/paralegal
https://rust-book.cs.brown.edu/

We developed a new pedagogy of ownership to address this disconnect. At its heart is a conceptual
model of ownership types as flow-sensitive permissions to read, write, or own data. We built a compiler
plugin that takes a Rust program and generates a diagram showing how each statement affects permissions.
Finally, we wrote a replacement chapter on ownership for the Rust Book that uses these diagrams (link).

We evaluated the permissions pedagogy by comparing the learning outcomes of our new text versus
the baseline chapter on ownership in The Rust Programming Language. To measure learning outcomes,
we designed and deployed an instrument to evaluate learners’ understanding of ownership. An A/B test
of the two texts found that our pedagogy improved average scores on the instrument by +9% (N = 312,
p < 0.001, d = 0.56). More broadly, this experiment validated our hypothesis that gathering quiz data at
scale would be a useful tool for designing and evaluating language learning interventions.

Future Work
Below are several research questions that I am interested to work on during my professorship.

What should be the successor to TEX? The modern document uses teraflops of processing power and
millions of pixels to... render stylized text on emulated 8.5” X 11” pieces of paper. Absurd! That made sense
at the birth of TgX in 1978, but the future of communication needs better document technologies. I want to
study this problem from the cognitive and PL perspectives. First, which aspects of reading comprehension
could be better facilitated by changes to the communication medium? For instance, “explorable explana-
tions” are probably less cognitively useful compared to ideas such as: all symbols should be linked back to
their definition. All figures should be visible on-screen when a person is reading text about a figure. All
text should come with machine-checkable comprehension questions to engage the reader.

But this begs the PL perspective: how should we design a document language to make the necessary
cognitive augmentations practical for authors, especially those without significant training in technical
communication, educational psychology, and visual design? How can document languages make it easy
to correctly compose content and computation? My prototype language Nota (nota-lang.org) and my doc-
ument calculus formalism (POPL 2024, [6]) are my first steps in this direction.

How will Al programming tools change the nature of programming expertise? Tools like GitHub
Copilot have made a splash in the programming community. For programmers, the question is: how should
they most effectively incorporate these tools into their workflow? For programming language designers:
how should they design language syntax and semantics when knowing that future code is equally likely
to be written by a machine as much a person? Psychology provides the useful framework of recognition
vs. recall. Programming has long been a recall-oriented activity — programmers commit to memory the
syntax and semantics of a language, and write programs by recalling that knowledge. AI shifts towards
recognition — programmers ask for a program, and recognize whether the generated code is satisfactory.
I want to study the cognition of program recognition: how the features of a program and the aspects of a
person’s background would help or hamper them in distinguishing desirable from undesirable programs.

What are useful, lightweight metrics for comparing the expressiveness of software systems?
Library developers love to market their software as being “easy to use” or “for humans”. Researchers often
claim that their systems are often “more expressive” than prior work. However, the singular metric that
often justifies these claims is lines-of-code. Despite the metric’s imperfection , no one has yet come up with
an alternative besides “run a large-scale user study” or “deploy the tool in industry and see who adopts it
Here’s a hypothesis I want to test: the length of the argument for why a program is correct (say, the size of
a proof in a proof assistant) has a higher correlation with program comprehension effort than the length
of the program itself. If this hypothesis could be experimentally validated, then that would be grounds for
developing a new expressiveness metric. A system that lends itself to short proofs across a benchmark of
reference tasks could be predicted as more usable (to an expert) than a system requiring longer proofs.

https://rust-book.cs.brown.edu/ch04-02-references-and-borrowing.html
https://nota-lang.org/

References

(1]
(2]

(8]

Vannevar Bush. 1945. As We May Think. The Atlantic 176, 1 (1945), 101-108.

Will Crichton. 2021. Documentation Generation as Information Visualization. In Proceedings of the 11th Annual Workshop on
the Intersection of HCI and PL (PLATEAU 2021). http://reports-archive.adm.cs.cmu.edu/anon/isr2020/abstracts/
20-115E.html

Will Crichton. 2021. RFC #3122: Automatically scrape code examples for Rustdoc. https://github.com/rust-lang/rfcs/
blob/master/text/3123-rustdoc-scrape-examples.md

Will Crichton, Maneesh Agrawala, and Pat Hanrahan. 2021. The Role of Working Memory in Program Tracing. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI "21). Association for Computing
Machinery, New York, NY, USA, Article 56, 13 pages. https://doi.org/10.1145/3411764.3445257

Will Crichton, Gavin Gray, and Shriram Krishnamurthi. 2023. A Grounded Conceptual Model for Ownership Types in Rust.
Proc. ACM Program. Lang. OOPSLA2 (October 2023). arXiv:2309.04134 (To appear).

Will Crichton and Shriram Krishnamurthi. 2024. A Core Calculus for Documents. Proc. ACM Program. Lang. POPL (January
2024). arXiv:2310.04368 (To appear).

Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan. 2022. Modular Information Flow through Own-
ership. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Imple-
mentation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 1-14. https:
//doi.org/10.1145/3519939.3523445

Douglas Engelbart. 1962. Augmenting Human Intellect: A Conceptual Framework. Technical Report. Stanford Research Insti-
tute.

[9] J. C. R. Licklider. 1960. Man-Computer Symbiosis. IRE Transactions on Human Factors in Electronics HFE-1, 1 (1960), 4-11.

https://doi.org/10.1109/THFE2.1960.4503259

http://reports-archive.adm.cs.cmu.edu/anon/isr2020/abstracts/20-115E.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2020/abstracts/20-115E.html
https://github.com/rust-lang/rfcs/blob/master/text/3123-rustdoc-scrape-examples.md
https://github.com/rust-lang/rfcs/blob/master/text/3123-rustdoc-scrape-examples.md
https://doi.org/10.1145/3411764.3445257
https://arxiv.org/abs/2309.04134
https://arxiv.org/abs/2310.04368
https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1109/THFE2.1960.4503259

