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Abstract

Program slicing is the technique of automatically identifying the subset of a program

that is relevant to a particular piece of code. In theory, slicing addresses one of

the core challenges of modern-day programming: sorting through large quantities

of information to find what is relevant to the task at hand. However, very little is

known about how people would actually use a slicer while programming. This dearth

of evidence is compounded by the fact that no practical program slicer exists for

programmers to use today.

This dissertation contributes to the theoretical and practical foundations of pro-

gram slicing in three ways. First, I provide evidence for the cognitive basis of slicing.

I report on a series of experiments that demonstrate how a person’s working memory

significantly limits their ability to remember information about a program while en-

gaging in a variety of comprehension tasks. These experiments support the design of

tools to reduce working memory load while programming, such as program slicing.

Second, I describe the theory and implementation of a modular program slicer

for the Rust programming language. This slicer is based on a novel information flow

analysis, Flowistry, that leverages Rust’s type system, namely ownership types, to

approximate the behavior of unknown code solely from its static type. With these

approximations, code can be analyzed more efficiently (no whole-program analysis)

and robustly (no library source code needed). I show that this approximation is

provably sound and reasonably precise in practice.

Finally, I describe the design of a new program slicing interface, Focus Mode,

that interactively visualizes slices as the user changes their focus in a program. I

report on a user study of Rust developers debugging programs with Focus Mode.
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We find that slices do help programmers find relevant code, for example by focusing

their attention on code with unexpected side effects. However, slices may also exclude

code which is cognitively relevant to understanding a bug, suggesting the need for

further work on the design of program analyses and user interfaces for code relevance.

Flowistry and Focus Mode are both free and open-source tools that have

been downloaded by thousands of Rust developers. The tools are publicly available

at https://github.com/willcrichton/flowistry
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Chapter 1

Introduction

Programming is a challenging activity. Programmers today have to learn dozens

of arcane tools, reason about the behavior of complex systems, and work within

sprawling teams where no one understands their entire codebase. As a result, studies

of programmers show their working hours are largely spent reading or navigating

through code, not writing or maintaining code [1, 2]. The quality of the code also

suffers — software bugs cost an estimated $2 trillion each year in the US alone [3].

However, collectively improving the process of programming is no small feat due

to the inherent variability of the domain. For example, does a front-end software en-

gineer writing webapps in Typescript share anything in common with an embedded

systems developer writing kernels in C? If the answer is no, then progress is doomed

to discovering piecemeal solutions that must be reinvented for every new problem do-

main. But the human process of programming seems to have some common ground

across domains. Programmers have a shared cognitive architecture that influences

how they approach programming problems. Programming has a core shared vocab-

ulary of concepts like variables and functions.

Therefore my research approach is to combine cognitive psychology and program-

ming language theory to create tools that simplify programming across a wide variety

of tasks and domains. Cognitive psychology helps us understand what makes tasks

hard for people: having to visually parse a complicated display, having to juggle

competing tasks, having to remember too many thing at once. And programming

1
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language theory helps us understand what properties a program has : whether a pro-

gram has undefined behavior, whether a function satisfies its specification, whether

one variable depends on another. Together, these fields can provide a principled

foundation for the design of practical programming tools.

This dissertation represents one instantiation of this idea. It describes my process

of combining the cognitive theories of memory and perception with the programming

language theories of information flow and ownership types to design a new kind of

program slicer that helps developers find code relevant to their task.

1.1 Perception and Memory

The main aspects of cognition that I investigate in relation to programming are

perception and memory. Together, they form the cognitive foundation for how we

understand the world. A person perceives the world (or a program) through the five

senses, and then they persist information about the world in their memory. The

study of perception and memory has influenced several fields of applied cognitive

psychology such as industrial design [4], information visualization [5], and human-

computer interaction [6] — and so programming may too benefit from this lens.

As a case study on the influence of perception and memory, imagine a person is

in their kitchen making dinner by following a recipe. The person needs to determine

the next step in the recipe. To understand the state of their recipe, the person can:

• Visually survey which ingredients are on the countertop, or the color of the

object being cooked.

• Pick up containers and feel their weight to judge the volume of their contents.

• Listen for indicative sounds like the bubbling of boiling water or sizzling of oil.

• Smell the aroma of food baking out of view in the oven.

In each case, the person can quickly and effortlessly perceive information relevant to

the state of the recipe. They do not need to remember this information because it is

readily perceivable.
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Now imagine an alternate scenario where the cook is not actually inside the

kitchen, but rather inside a separate room, remotely controlling a cooking robot

with a joystick. The cook cannot see, hear, smell, taste, or touch anything in the

kitchen. By default, the only feedback they receive is a notification of catastrophic

failure, e.g. if the robot sets the kitchen on fire. The cook must then hold all relevant

information in their head: a mental image of the kitchen, a mental note of the robot’s

location and the state of the recipe, and so on.

You can imagine that a person in this nightmarish scenario would be very unlikely

to prepare a good meal, and very likely to set the kitchen on fire. The core reason

is that human memory is subject to many severe limitations. For example, short-

term (or “working”) memory has a very small operating capacity and can be easily

interfered with distractions or other stimuli [7]. To perfectly remember everything

about the robot and the recipe would be nigh impossible.

Yet, this scenario is more or less how a programmer must perform their job! A

programmer writes a program, asks the computer to execute it, and waits until either

receiving the expected output or notification of failure. In the interim, the state of

the computer is wholly invisible to the programmer, unless carefully prodded with a

printf or inspected in a debugger. Programmers frequently have to “play computer”

in their heads to understand why a program executes as it does. We can therefore

make two predictions:

1. A core cognitive challenge of programming is its load on working memory (sup-

ported by the experiments in Chapter 3).

2. Tools which make visible information that would otherwise be mentally deduced

may reduce the cognitive challenge of programming (supported by the user

study of our tool in Chapter 6).

1.2 Cognitive Support for Programmers

Today, the main tool designed for providing such assistance to programmers is the

integrated development environment, or IDE. A modern IDE contains dozens of both
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ambient and on-demand visualizations of program information. These visualizations

are designed to assist the programmer when reading and writing programs, as shown

in Figure 1.1. The features are a form of cognitive support, in that they externalize

information that the programmer would otherwise need to deduce or remember.

Each IDE feature is implemented as a form of program analysis to varying degrees

of sophistication:

• At one end are purely textual features such as the minimap (Figure 1.1-6),

which require no understanding of the program at hand. These features can be

applied to any programming language or arbitrary text file.

• In the middle are features that rely on knowledge of syntactic structure such as

syntax highlighting (Figure 1.1-2) and module location (Figure 1.1-1). These

features work for most programming languages.

• At the far end are features such as autocomplete (Figure 1.1-5), inlay type hints

(Figure 1.1-3), and mutability indicators (Figure 1.1-7). These features require

a language to have a static type system with e.g. type inference and mutability

modifiers.

However, even the most semantic of these program analyses still only provides low-

level information about the program’s behavior. For instance, the fact that snippet

is of type String does not indicate the role of that variable in the program, or how

snippet is defined, and so on. It is therefore an open problem to design IDE features

that support high-level cognitive tasks in programming, while still being generally

applicable to a large class of programs.

1.3 Relevance and Program Slicing

One such high-level concern is relevance. Any sufficiently large codebase weaves

together a number of features, concerns, modules, classes, data sources, and so on.

But for a given programming task, only a small subset of the total code in the codebase



CHAPTER 1. INTRODUCTION 5

2
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Figure 1.1: Examples of cognitive support through visualization provided by a modern
IDE, specifically Visual Studio Code with the Rust Analyzer extension. Each example
is highlighted in yellow and described by the corresponding item below.

1. Breadcrumbs show the position of the current function in the codebase. This
helps the user understand how local changes are positioned in a global context.

2. Syntax highlighting uses color to indicate the syntactic role of a piece of code.
This helps the user discern the role of a piece of code at a glance [8].

3. The inferred type of a variable is inserted as a “ghost” annotation. This prevents
the user from needing to infer the type themselves.

4. The names of positional arguments are visualized in a function call. This means
the user does not need to remember the order of arguments to the function.

5. When writing code to call a method, an autocomplete box shows the set of
possible methods based on the receiver’s type. This means the user does not
need to exit the editor, find the type’s documentation, read it, and return back.

6. A minimap shows a zoomed-out version of the current file’s contents. This helps
the user editing a large file remember where they are.

7. Objects that are mutable and methods that mutate are underlined. This helps
the user quickly discern possible locations where side effects occur.

8. A closing brace is annotated with the object it closes. This helps a programmer
remember which syntactic scope they are in.
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is likely to be relevant. Therefore a key cognitive task of programming is identifying

relevant code.

However, programmers are not always effective at distinguishing the relevant from

the irrelevant. In one study of Java developers fixing a bug in a GUI library, Ko

et al. [9] found that programmers spent 36% of their time inspecting irrelevant code.

Conversely, programmers may ignore relevant code, such as by not recognizing hidden

dependencies [10]. Therefore programmers may benefit from IDEs providing cognitive

support targeted at identifying relevant code.

A mechanism that has long been hypothesized to assist programmers with finding

relevant code is program slicing. The (backward) program slice of a given variable is

the set of code that can influence the value of that variable, and a program slicer is an

algorithm for computing program slices. For example, if a programmer is debugging

an assertion failure like assert(*x == 0), then the set of code relevant to the bug

is (in theory) the backward slice of *x. A program slicing tool could visualize which

code is inside the slice, thereby reducing the size of the programmer’s working set

and theoretically lowering the cognitive load of the task at hand.

It was this cognitive connection that inspired me to pursue the study of program

slicing — can slicing actually be practically useful in helping programmers find rel-

evant code? In fact, slicing was originally formulated in the 1980s by Weiser [11],

and it was the subject of hundreds of papers in the ensuing years. Yet, practical

algorithms for slicing have remained elusive. No program slicer remains in use today.

The last two human-centered studies of program slicers took place in 1986 [12] and

2002 [13].

One possible factor in the scarcity of slicers is the inherent difficulty in analyzing

the popular languages of the day. In the period from the late 1980s to early 2000s,

those languages were primarily C and Java. But these languages are notoriously

difficult to analyze. For instance, the backward slice of *x depends on what x could

point to. Pointer analysis itself has been the subject of yet more hundreds of papers!

And despite decades of research in static analysis, these tools still fail to catch memory

safety issues in widely used C/C++ software. No amount of sophistication will likely

be sufficient to practically analyze constructs like pointers in unrestricted languages
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like C. Higher-level analyses like slicing may therefore be hopeless!

1.4 Ownership-based Information Flow

Yet, C and Java are no longer the only popular languages in 2022. Advances in

static type systems have slowly seeped into the mainstream. New and old languages

alike have gained features like generics, algebraic datatypes, type inference, and so on.

Modern PLs with sophisticated type systems restrict the space of expressible programs

in exchange for expanding the space of statically verifiable program properties.

Concurrently, the PL research community has developed a number of new theoret-

ical frameworks for reasoning about programs. Researchers have designed program-

ming models centered on static analysis of properties like runtime performance [14],

communication protocols [15], and more. These models move past the traditional

type-safety goal of eliminating undefined behavior toward enabling more deeply se-

mantic analyses.

The theoretical contribution of my dissertation is connecting two advances in these

parallel trends to program slicing, namely: ownership types and information flow.

Ownership types are a discipline for ensuring memory safety in languages without

garbage collection, popularized in Rust. Information flow is the property of whether

learning about one variable provides information about another, commonly applied

in security research to verify that sensitive data cannot leak publicly.

In short, the relationship between these topics is that program slicing is a special

case of information flow analysis, as established by Abadi et al. [16]. I demonstrate

in this dissertation that ownership types provide the foundation for a modular static

analysis of information flow. Therefore it is practically feasible to compute program

slices for a language with ownership types, namely Rust.

The technical contribution of my dissertation is the design and implementation of

Flowistry, a Rust static analyzer that puts this theoretical insight into practice.

Flowistry integrates with the Visual Studio Code IDE to provide a novel interface

called Focus Mode, where a user can interactively view the slice of code under their

cursor, as shown in Figure 1.2. The goal of Focus Mode is to externalize program
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Figure 1.2: An example of the Focus Mode interface within Flowistry. When
the user selects a piece of code, like the variable end, then all code outside the forward
and backward slice of the variable is faded out. For example, neither spans or offset
can influence end, and they are therefore faded out.

slices in a manner that is quickly perceivable to the programmer and does not distract

from the higher-level task at hand.

1.5 Relevance ̸= Information Flow

Since the inception of program slicing, papers on the subject have routinely referred

to a slice as the set of code “relevant” to a particular variable. But it is not inherently

clear whether relevance viewed as a logical property of a program (i.e. information

flow) is the same as relevance viewed as a cognitive property of a program (whether

reading a piece of code is helpful to the programmer in accomplishing their task).

Therefore the final experimental contribution of my dissertation is a formative user

study exploring whether program slicing (as implemented in Focus Mode) actually

helps programmers find relevant code. I recruited 18 participants familiar with Rust

and asked them to debug a series of short Rust programs both with and without

Focus Mode. I qualitatively coded my observations from each participant’s session,
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and searched for patterns of observations within each condition.

Consistent with Green’s theory of hidden dependencies in the Cognitive Dimen-

sions of Notation [17], I found Focus Mode helpful in surfacing unexpected depen-

dencies between code, often induced by tricky side-effects in imperative-style pro-

grams. Focus Mode also helped de-emphasize code irrelevant to the task in some

situations.

However, another key finding is that in some tasks, code outside the slice of a

variable was relevant to understanding a bug involving that variable. For instance,

say a variable was defined as y = f(x) and the bug is that the code should say

y = f(z). Then z may be outside the slice of y, but it should not be! A slicer

like Focus Mode can therefore mislead a programmer into ignoring relevant code

outside a given slice. This finding suggests that the longstanding definition of slices

as “relevant code” does not match reality.

1.6 Dissertation Roadmap

The remainder of this dissertation is organized as follows:

• Chapter 2 surveys the history of cognitive psychology as applied to program-

ming, with a focus on working memory.

• Chapter 3 describes a set of experiments about how working memory influences

a person’s ability to remember state about a program.

• Chapter 4 reviews the history of program slicing and the evidence for how the

technique relates to cognition, as well as the connection to recent advances in

type systems and information flow analysis.

• Chapter 5 describes a technique for the modular static analysis of information

flow that leverages ownership types, providing a proof of theoretical soundness

and experiments supporting its empirical precision.

• Chapter 6 reports on a user study of an IDE-integrated Rust program slicer
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built on the technique in Chapter 5, finding that the slicer helps programmers

find relevant code in some situations.

• Chapter 7 concludes the dissertation and suggests some directions for future

work.



Chapter 2

Cognition and Programming

Every programming system must, at some point, come into contact with a person.

That person needs to understand and manipulate the system — both cognitive tasks.

In fact, research from across the spectrum of computer science will often cite cog-

nition as an explicit motivation or design principle for systems. For example, in

programming languages (emphasis added):

“Silq is the first quantum language to provide intuitive semantics.” —

Bichsel et al. [18]

And high-performance computing:

“This paper explores a system architecture designed to make it easy for

users to reason about performance bottlenecks.” — Ousterhout et al. [19]

And distributed systems:

“We believe that Raft [...] is simpler and more understandable than other

algorithms.” — Ongaro and Ousterhout [20]

That is to say, in each of these systems (and many others) the authors were

principally motivated by how their system design related to cognition. Yet despite

these good intentions, very few of these papers produced conclusive evidence for their

11
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cognitive claims. Bichsel et al. [18] showed that programs in their language are on

average smaller than in a competing language. Ousterhout et al. [19] showed that

their tool correctly predicts system performance in a variety of configurations. Neither

evaluation involved a human.

Ongaro and Ousterhout [20] is particularly interesting in that their consensus al-

gorithm, Raft, has been widely adopted in industry, arguably due to its simplicity

and understandability. Yet, they were only able to show in a user study that partic-

ipants had a small increase in quiz scores when learning about Raft versus another

popular consensus algorithm. So in all of these cases, there was a large gap between

a researcher’s intuition for how a tool relates to cognition, and the methodologies

available to the researcher for demonstrating that relationship.

It was the invariable recurrence of this gap that initially spurred my interest in

the topic of cognition and programming. Why is it so hard for computer scientists

to back up human-centered claims about their software? Especially in the context

of programming language design, many widespread folk theories have never been

demonstrated to a significant degree of rigor, such as “static type systems are valuable

for productivity in large codebases” or “message-passing concurrency is easier for

programmers to reason about than shared-memory concurrency.”

Therefore early in my Ph.D., I set out to understand: what do we know about

programming as a cognitive process? Why has this knowledge not found widespread

use in the design of programming tools? And what would it take to make it practically

useful for researchers, devtool builders, and programmers?

2.1 The History of Cognitive Psychology and Pro-

gramming

The human factors of programming have been relevant as long as humans have been

programmers. Many of the most influential ideas in computer science stemmed from

human factors on some level. For example:
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• Grace Hopper invented compilers because she didn’t like programming in oc-

tal [21].

• Edsger Dijkstra argued for structured programming based on the cognitive lim-

itations of people to “visualize processes evolving in time” [22].

• Don Knuth invented profiling because his intuition for which compiler optimiza-

tions mattered was different than what people actually needed1 [23].

• Tony Hoare argued that “the primary purpose of a programming language is to

help the programmer in the practice of his art” [24].

It was not until the 1970s however that human factors research on programming

started to evolve from experience reports and expert intuition into a proper science.

Researchers started conducting controlled experiments. They borrowed methodolo-

gies and theories from other disciplines. And that tradition has continued: human-

centered programming research can be found in the fields of software engineering,

computer science education, human-computer interaction, and even sometimes pro-

gramming language design.

However, a researcher in 2022 looking back on those early experiments in the 1970s

and 80s would find a wholly alien world. Researchers then focused much more heavily

on cognitive psychology, on perception and memory, and generally on the construction

of theory as much as systems. Therefore to understand this alien perspective, this

section will chronicle the rise and fall of cognitive psychology in programming research.

2.1.1 The First Experiments

The earliest attempts to understand programming as a cognitive activity started in

the 1970s, often through the lens of adjudicating questions of language design. Re-

searchers investigated topics such as: structured programming vs. GOTO [25, 26, 27],

1This paper was, in fact, the first empirical analysis of code “in the wild.” Since Knuth didn’t
have access to GitHub in 1971, he had to resort to methods such as pulling programs out of a
literal trash can, and stationing a research assistant by the printer to ask for copies of other peoples’
programs.
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static vs. dynamic typing [28], the use of flowcharts [29], and the use of indenta-

tion [30].

In the 1981 article “The Psychological Study of Programming,” Sheil [31] provides

an excellent review and scathing critique of this early work, best summarized in this

excerpt:

“Although some psychological theory is very suggestive, it usually lacks

the robustness and precision required to yield exact predictions for be-

havior as complex as programming. As a result, the psychological work

on programming consists mainly of atheoretical evaluations motivated di-

rectly by the concerns of contemporary computing practice. [. . . ]

[These experiments] are unsatisfactory in that they are methodologically

weak, the effects they report are small, and yet they are presented as if

they establish claims that go far beyond their data. [. . . ] High individual

variances, strong practice effects, and (consequently) weak findings are

exactly what one would expect from studying the average performance of

highly learned skills across diverse collections of individuals.”

That is to say, while there were many experiments about the psychology of pro-

gramming during this time, it is difficult to conclude what general lessons may be

learned. Perhaps the most important takeaway is that programming is simply too

complex a cognitive task to approach without any theoretical basis.

2.1.2 Developing Theories of the Mind

In some ways, those early experiments on programmers reflected a behaviorist ap-

proach to psychological research. Within strict behaviorism, the mind is treated as a

black box, and psychological theories are developed by observation of a stimulus/re-

sponse relationship. Behaviorism was the prevailing methodology of psychology until

cognitive psychology became a significant force in the 1970s.

By contrast to behaviorism, a central goal of cognitive psychology is to investigate

the idea of mental states — to model the unobservable mind. One such foundational
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model is working memory, specifically its limitations proposed by George Miller in

his famous paper “The Magical Number Seven, Plus or Minus Two” [32]. Miller drew

on Claude Shannon’s information theory to explain the results of several then-recent

psychological experiments in information-theoretic terms.

When viewing human perception as an information receiver, a person can generally

receive about 2.5 bits of information in a single stimulus. For instance, if the average

person is given ahead of time a set of N tones, then prompted with one of the N

tones, their ability to identify which tone they just heard falls off around N = 6 (i.e.

22.5). The same is true when viewing human memory as information storage. If the

average person is read aloud a series of N digits and then asked to repeat them in

order (a “digit span” task), they will only remember up to about N = 7.

The key difference for memory is that the information capacity is defined in terms

of items, or more commonly chunks. A person can perform equally well in remem-

bering binary digits, decimal digits, or words. However, each kind of item contains

a different amount of information (e.g. 1 bit for a binary digit, 3.3 bits for decimal,

many bits for a word). Therefore a person can actually remember unbounded amounts

of information depending on the size of the item in memory! For example, Chase and

Ericsson [33] trained a Carnegie Mellon undergraduate for two years (!) to eventually

achieve N = 80 (!!) on a digit span task by use of mnemonics to cluster the digit

sequence.

Since the formulation of Miller’s initial theory, cognitive psychologists have shown

that expertise in many domains involves efficient use of working memory via careful

chunking. Chase and Simon [34] showed that expert chess players could remember

a chess board at a glance by encoding high-level game features (“this is the Sicilian

Defense but with...”), while novice chess players would struggle to remember the same

information. This observation led to a crucial insight: that expert knowledge could be

interrogated through chunking.

Therefore going into the 1980s, many studies about the nature of programming

expertise used chunking to examine cognition. These experiments have roughly the

following form:

1. Create an object (e.g. a program) in a domain (e.g. FORTRAN).
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2. Have a person study the object so its contents fill their working memory.

3. Remove the object from the person’s view.

4. Ask the person to tell you about the the object, i.e. fetching its contents from

working memory.

5. Analyze the order of object features in the response. Features that consistently

appear close together are considered part of a single chunk.

For instance, here are two such studies from the time:

• Adelson [35] had expert and novice programmers recall lines of code after being

shown three functions scrambled together. Novice programmers chunked lines

based on syntactic similarity, while expert programmers mentally reconstructed

and chunked together lines from each function.

• McKeithen et al. [36] had expert and novice programmers recall language syntax

keywords after studying a set of flashcards. Novice programmers chunked key-

words based on syntactic similarity (e.g. “SHORT”, “STEP”, and “STRING”),

while expert programmers chunked keywords based on their semantic similarity

(e.g. “IF”, “THEN”, “ELSE”).

These initial findings suggested that, indeed, expert programmers did acquire some

kind of knowledge that changed how they encoded information about a program in

their working memory. Novices remembered programs “syntactically” while experts

remembered them “semantically”. But the nature of these semantics remained un-

clear, so researchers sought to develop more nuanced theories of the structure of

programming knowledge.

2.1.3 Schemas, Plans, and the Structure of Knowledge

The most popular theory of knowledge in the 1980s was schemas, or hierarchical

templates that describe relationships between the abstract slots in the template [37].

For example, a face schema would contain an eye, nose, mouth, etc. and prescribe
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that a face has two eyes, the eyes are above the mouth, so on. Each component

would itself have its own schema. Cognitive psychologists postulated that people

constructed schema over time and applied them to understand the world.

One notable application of schema theory is the interpretation of the Wason se-

lection task [38]. In this task, participants are given a logical rule about two-faced

cards. For instance, if a card has a letter on one side and a number on the other, then

a rule could be “if the letter is a vowel, then the number must be even.” Participants

are then shown one side of a particular card and asked: do you need to flip the card

to know whether the card satisfies the rule? Wason demonstrated that with this kind

of logical reasoning task, participants do very poorly, getting the answer correct less

than 10% of the time.

However, later research showed that changing the problem setting while preserving

the logical structure could significantly impact performance. Griggs and Cox [39]

rephrased the problem as: a card has a person’s age on one side and a drink order

on the other side. The rule is: if a person is under 21, they cannot order a beer. In

this setting, performance jumps from 10% to 74%! The schema theory interpretation

of this result is that people naturally build a schema for logical deduction in social

situations, like for rules around alcohol consumption. While people are generally

bad at abstract logical reasoning (see Evans [40]), they are much better at schematic

reasoning, and therefore accomplish the beer-themed selection task at astoundingly

higher rates.

Several studies have provided evidence for the existence of schemas in program-

ming. For example, Letovsky [41] ran a thinkaloud study while experienced program-

mers tried to add a feature to a database implemented in FORTRAN. During the

experiment, participants would ask questions reflecting their thought process, such

as: “Ok, dbase is an array: 200, 7. Why seven? Seven fields, I’ll bet.” Letovsky

qualitatively analyzed patterns in the participants’ questions.

For example, when reading this piece of code that searches the database for a

record:

1 If (oldnme .EQ. name) THEN

2 iptr = ioldp
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3 RETURN

4 ELSE

5 CALL srch2(dbase, ifinal, iptr, name)

Then participants would frequently understand this code as an instantiation of the

generic schema:

1 If cheap solution applies

2 THEN use cheap solution

3 ELSE use expensive solution

If a participant identified that the two branches had the same ultimate outcome, then

this fact would cue them into testing whether this performance-optimization schema

explained the code at hand.

Closely related to (and sometimes synonymous with) schema are plans. A plan is

a hierarchical decomposition of a task into a series of subgoals that can be concretely

acted upon. Within programming psychology research, plans usually refer to pro-

gram templates, program abstractions, or other means of decomposing programming

problems.

One popular research direction in the 1980s was an attempt to capture schema/-

plan knowledge as a series of formal rules (a “production system”) that could com-

putationally emulate the behavior of a human programmer. For instance, Anderson

et al. [42] analyzed transcripts of people learning to program Lisp and created a model

that could produce programs through similar means, e.g. generating one function by

analogy to a similar one. However, the complete set of rules used was never specified

and the code never released, so efforts like this are largely lost to history.

Another research direction focused on the role of plans in how students learned

basic programming skills. Spohrer et al. [43] demonstrated that a common source

of bugs for novice programmers was not in the translation of an individual plan to

code, but rather the composition of multiple plans — specifically a merging compo-

sition where code from each plan is interleaved together in the same block. These

researchers argued that plans should more generally serve as the basis for a redesigned

CS curriculum [44], but this idea does not appear to have ever come to fruition2.

2Recent work within the CS education research community has started to renew interest in plan
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More generally, these intersecting lines of research on working memory, chunking,

schemas, plans, etc. seem to have dried up by the early 1990s. Many of the authors

cited above collaborated on the publication of a excellent survey titled Psychology of

Programming [48], which I highly recommend to anyone seeking a deeper dive into

these topics. But after the book’s publication in 1990, the research community largely

lost interest in building a cognitive theory of programming.

2.1.4 The End of the Cognitive Era

Why did research on cognition and programming die out? One possible explanation

is the contemporaneous backlash to cognitivism within the broader field of human-

computer interaction research. This position is best summarized by Landauer [49]:

“For the most part, useful theory is impossible, because the behavior of

human-computer systems is chaotic or worse, highly complex, dependent

on many unpredictable variables, or just too hard to understand. Where

it is possible, the use of theory will be constrained and modest, because

theories will be imprecise, will cover only limited aspects of behavior, will

be applicable only to some parts of some systems, and will not necessar-

ily generalize; as a result, they will yield little advantage over empirical

methods. [...] Direct empirical models, rules of thumb, and formative eval-

uation together are a more-than-adequate base for important inventions

and advances.”

This critique starts with the same premise as Sheil’s [31] critique of early program-

ming psychology research: human-computer interaction (programming or otherwise)

is wickedly hard to understand due to its complexity. But the conclusion is different.

Sheil argued for the construction of theory from first principles, whereas Landauer

argued for the wholesale rejection of theory in favor of pure empiricism.

Landauer’s critique stems from a simple observation: a cognitivist approach to

understanding HCI had not produced much knowledge that could be applied to the

composition, such as: Fisler et al. [45], Duran et al. [46], Cunningham [47]
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design of tools for users. HCI theory such as GOMS [6] could precisely model low-level

actions like mouse movements and changes in gaze, but could not make predictions

about higher-level tasks. The construction of elaborate theory took significantly more

effort to produce significantly less insight than just iteratively designing a product

with frequent user testing.

Applying this idea to programming, take any individual result, such as McKeithen

et al. [36] showing that expert programmers semantically chunk programming lan-

guage keywords while novice programmers syntactically chunk them. How can this

observation inform the practice of programming? It’s not clear. This research was

performed by cognitive psychologists, whose principle motivation was understanding

people and not improving programming, so the paper itself offers few applications.

Later interpretations of this work offer some more practical ideas: Hermans [50] cites

McKeithen to say that programmers should strive to write “chunkable” code. She

further cites Prechelt et al. [51] to suggest that design patterns improve chunkability.

But the connection from the ultimate insight to the original theory is still quite loose

— reading code written with a visitor pattern is quite far from recalling language

keywords.

In my view, the only major idea that survived from pre-2000s programming/cog-

nition research is the Cognitive Dimensions of Notation. From the early 1970s to

late 1980s, several British psychologists had collaborated on studies applying psy-

chology to programming: Thomas Green, Simon Davies, David Gilmore, Max Sime,

and others. This prolific group published dozens of papers on programming and cog-

nition (including several of the studies criticized by Sheil [31]). But this body of work

largely existed as a set of independent experiments, with no coherent framework to

incorporate each result.

Therefore in 1989, Thomas Green published “Cognitive Dimensions of Nota-

tion” [10], which coalesced these low-level results into a set of high-level “dimensions”

describing common usability problems with information systems. For example, the

dimension of “viscosity” describes whether a change to an object affects only other

objects close to the change (good, local, viscous) or far away from the change (bad,

global, not viscous). The dimension of “premature commitment” describes the extent
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to which a system requires users to commit to decisions before they have sufficient

information to make that decision. The specific choice of dimensions was not par-

ticularly systematic, but likely informed by Green’s deep experience working in the

various Applied Psychology Units of British universities.

In a 1996 paper titled “Delivering Cognitive Psychology to HCI” [52], Green and

others articulated why they believed this style of research could be useful:

Our contention is that person-system research cannot be achieved merely

by collating person-based research with artifact-based research. It is only

feasible if a common language can be developed, in which relevant aspects

of both the person and the system can be expressed. [...]

The framework of cognitive dimensions is far from complete, but the aim

is apparent: to supply a vocabulary of discourse in which non-specialists

can find terse descriptions of important aspects, reminders not to overlook

other aspects, and some hint of the trade-offs between different aspects;

and which can be indexed into specialist research in each field. [This con-

stitutes] a ‘delivery’ of cognitive psychology by making sure that the vo-

cabulary includes terms for design considerations which have been shown

relevant by cognitive psychology.

History has arguably supported Green’s claims. Their ideas have explicitly in-

fluenced notable research systems like the Whyline debugger [53] and the Protovis

visualization toolkit [54]. The Cognitive Dimensions of Notation papers have collec-

tively accrued thousands of citations from across the cognitive and computer sciences.

Researchers seem to have found the dimensions both easy enough to incorporate into

their design process, but also informative enough to generate useful design insights.

2.1.5 The Field Moves On

Since the turn of the millennium, research on the human factors of programming

has dispersed throughout academia. Researchers in HCI, software engineering, and

computing education continue to conduct user studies, build prototype programming
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systems, and otherwise still pursue the ideal of usable and learnable programming.

However, cognitive psychology has largely fallen by the wayside in favor of other

human-centered design methods: contextual inquiry, grounded theory, surveys, and

so on. For example, the 2016 article “Programmers Are Users Too” [55] by Myers et

al. offered ten different methodologies for studying programmers, but none of them

involved the use of theory (cognitive or otherwise).

Arguably the closest analogy today to the 1970s-90s programming/psychology

research is the recent push towards neurological investigations of programming. Sieg-

mund et al. [56] explain the motivations for neuroimaging in their 2020 article:

“Research in program comprehension has been a cycle of booms and busts.

In the early 1970s and 1980s, the first wave of researchers were psycholo-

gists, using methods, such as memory recall, to probe how programmers

represent and process code in their mind. As a result, various theories and

mechanisms were proposed, such as programming plans and bottom-up

comprehension, but no clear consensus emerged. [...]

Programming research has entered the Neuroage. Neuroimaging offers a

unique opportunity to understand, build, and test theories of program

comprehension like never before. [...] For example, rather than stating

that programmers tend to process loops faster than recursive structures,

we would like to quantify how and to what extent the use of loops or

recursion influences task completion time and which cognitive processes

are responsible for this difference.”

Neurological research on programming has thus far taken the following form. fMRI

data provides coarse information about whether a particular location in the brain is

active during a task. Neuroscientists have done hundreds of studies to associate

each brain location with a high-level cognitive task, like language processing. Then

programming researchers will have participants read or write programs within an

fMRI machine and correlate brain activations with previous results.

For example, Peitek et al. [57] used fMRI while participants traced short programs,

finding that “during bottom-up program comprehension, Brodmann areas 6, 21, 40,
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44, and 47 are activated.” In discussion, they say that “[Brodmann areas] 21, 44, and

47 are related to different facets of language processing,” leading them to conclude:

“our results [...] imply that, during learning programming, training [...] language

skills might also be essential for programming skills.”

However, time will tell whether neurological methods provide enough information

for researchers to construct robust and useful theories of cognition in programming.

For instance, CS education researchers have struggled to effectively transfer even

well-established theories like cognitive load theory [58, 59]. Creating design-relevant

theory has always been a challenging aspect of importing psychological methods into

computer science. If neuroimaging should serve as the foundation of a new theory

of how people program, then more work needs to be done in linking the theoretical

results to the efficacy of its proposed interventions.

2.2 A Renewed Focus on Working Memory

Overall, programming/psychology research has struggled to find a balance between

being precise, correct, general, and useful. The Cognitive Dimensions of Notation

represent the best attempt yet to strike that balance, but I believe they still only

embody a fraction of the potential benefit that cognitive psychology can bring to

programming.

Previous research focused on using cognitive psychology to understand exper-

tise, e.g. using recall to investigate chunking which distinguishes novice from expert

knowledge. In that style of research, cognitive resources like working memory are

noisy channels through which expertise can be distilled. However, an alternative

style of research is to focus on how the limitations of these cognitive resources affect

human performance on cognitive tasks.

For example, research on information visualization has shown how the nature of

perception can guide the design of visualizations. Say a person wants to visualize a

categorical variable against a quantitative variable. They want to make it easy to

compare two quantities, and they are considering either a bar chart or a pie chart.

Vision science can tell us which kinds of visual objects people can compare quickly
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(i.e. preattentively). Namely, aligned bars are easy to compare for heights, while

pie slices are more difficult to compare for sizes, and therefore the bar chart more

cognitively efficient to a sighted reader than a pie chart. Any modern infovis text

such as Information Visualization: Perception for Design [5] is replete with such

design principles that are deeply informed by cognitive psychology.

Akin to how perceptual limitations influence information visualizations, one would

similarly expect that working memory limitations influence programming (as de-

scribed in Section 1.1). However, there is surprisingly little research on this subject,

at least within computer science proper. Therefore I set out to investigate: can we

find clear evidence demonstrating the influence of working memory on programming?

2.2.1 Program Tracing

A challenge in psychological research on programming is selecting the right task to

study. “Programming” is easily too broad. “Debugging” and “comprehension” are

complex — they can span hours, days, or even weeks. A cognitive psychologist once

remarked to me that the ideal task should take five seconds or less! I was put off by

this remark for a long time, but I have since come to see the wisdom in it.

The simplest programming task I could imagine (that would still be useful to

study) was program tracing. Program tracing is the task of mentally simulating a

program on concrete inputs to produce a concrete output. To trace a program, a

person follows a procedure step-by-step as specified in the source code. Go here, add

this, store that, repeat — a literal human information processor. Program tracing

encompasses questions such as: for some function f what is the concrete value of f(1)?

By contrast, program comprehension involves tasks about abstract relationships, e.g.

what is the symbolic value of f(x) in terms of any x ∈ N?
Tracing may seem like an absurd task — the entire point of a computer is to

automatically trace programs, and have the human operate at a higher level of ab-

straction. However, cognitive psychologists have repeatedly demonstrated the close

relationship between action and understanding in comprehension of language [60] and
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gestures [61]. By extrapolation, program tracing, the ability to execute a computa-

tional process, is likely a component skill of program comprehension, the ability to

understand that same process.

This claim has support from research in computing education and software engi-

neering. Students who could correctly trace programs performed better on program

comprehension questions [62, 63]. Students’ comprehension errors can often be at-

tributed to a flawed mental model (notional machine) of how a computer would trace

individual instructions [64]. Expert programmers use tracing to understand code when

its structure is not similar to a known schema [41, 65].

Prior qualitative studies have, in fact, shown that students encounter working

memory difficulties while tracing. Vainio and Sajaniemi [66] conducted a qualitative

analysis of students attempting to trace programs on paper. They found that some

students would use a strategy called “Single Value Tracing”. Namely, that students

would remember “at most one value for all the variables in the program.” One value!

That observation is certainly quite suggestive of a working memory limitation.

While program tracing itself has not been the subject of much research, many

related tasks have been investigated by both computer scientist and psychologists

through the lens of working memory. I review the evidence about those tasks in the

remainder of this section.

2.2.2 Arithmetic

Mental arithmetic is a well-studied task within the context of working memory [67].

It is also a “program” that people trace every day — adding multi-digit numbers is a

procedure many people are taught to memorize and mentally simulate from a young

age. For example, computing 47 + 18 is similar to tracing the program in Figure 2.1

(left).

Graham Hitch [68] first found in 1978 that a working memory analysis of men-

tal arithmetic could explain many observed calculation errors. While calculating,

a person must maintain a number of intermediates in working memory, such as all

previously computed digits and a carry bit. Based on a mathematical model fit to
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1 def add(n1, n2):
2 output, carry = [], 0
3 for d1, d2 in reversed(list(zip(n1, n2)

)):
4 intermediate = d1 + d2 + carry
5 output.insert(0, intermediate % 10)
6 carry = 1 if intermediate >= 10 else

0
7 if carry > 0:
8 output.insert(0, carry)
9 return output

10

11 assert add([4, 7], [1, 8]) == [6, 5]

1 def square_twodigit(n):
2 cn = min(n % 10, 10 - (n % 10))
3 nmt = n + cn
4 otn = n - cn
5 p1 = nmt * (otn // 10 * 10)
6 p2 = nmt * (otn % 10)
7 sm = p1 + p2
8 cn2 = cn * cn
9 return sm + cn2

10

11 assert square_twodigit(23) == 529

Figure 2.1: Mental procedures for addition (left) and squaring a two-digit number
(right). Procedures are represented as Python programs to emphasize the similarity
of mental arithmetic to program tracing.

experimental data, Hitch’s theory was that a person’s probability of forgetting an in-

termediate increased exponentially with the number of calculations since computing

the intermediate. For example, in mentally computing 138 + 326, if a person first

computes 6 + 8 = 14, then they will forget the ones-place digit 4 with exponentially

increasing probability after computing each subsequent digit.

Within the domain of mental computation, prior cognitive psychology research

has focused on memorized procedures like addition, as opposed to tracing unfamiliar

procedures presented through an external medium. Zhang and Norman [69] use a

representational analysis to justify why Arabic numerals are an ideal number repre-

sentation for performing mental multiplication. Campbell and Charness [70] ran an

experiment where participants memorized an eight-step procedure for squaring two-

digit numbers, shown in Figure 2.1 (right). They found that the majority of errors

occurred within 5 stages of the procedure, and most errors could be explained as work-

ing memory errors (not calculational errors) where one intermediate was substituted

for another.
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2.2.3 Variables

To understand the influence of working memory on variables in program tracing, we

can extrapolate the concept of an intermediate in mental arithmetic. For example,

consider tracing this program:

1 x = 12 + 9 - 2

2 print(x + 3)

This trace involves three kinds of intermediates. First, computing 12 + 9 involves

the intermediates of multi-digit addition, e.g. a carry bit. Second, the expression 12+

9− 2 requires remembering the intermediate 21 while computing 21− 2. Finally, the

variable assignment x = 19 must be remembered while tracing the second line. The

key idea is that each intermediate must be stored in working memory by association

to its role in the program. That association could be behavioral (carry bit), positional

(left hand side of an expression), or symbolic (the letter x). In this view, variables in

program tracing are intermediates with association to strings. A person remembers

x = 19, then retrieves the value 19 when cued with the variable x.

In the vocabulary of cognitive science, remembering a variable/value pair is paired-

associate learning, and retrieving the value from memory given a variable is cued

recall. Cued recall for paired-associate learning has been studied in a variety of

domains. The simplest form of study is memory span: how many pairs can a person

remember at once with no distractions? Multiple experiments on cued recall for pairs

of common English nouns found that participants could remember on average 5 out

of 10 pairs (when presented for 2s/pair) [71, 72].

Program tracing is not a pure memorization task, however — a person must

interleave the storage of variables in working memory with the calculation of expres-

sions. This raises the question: would calculation interfere with working memory for

variables? While this question has not been studied directly, its inverse has prior

work: working memory used by mental computation can be interfered with by cer-

tain competing tasks. In one experiment, participants had to mentally add three-digit

numbers while concurrently performing a dual task. Participants were significantly

more likely to forget the carry bit under a dual task which involves central executive
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working memory (Trails task, speaking aloud an alternating sequence e.g. “A-1-B-

2-. . .”) versus a dual task which involves phonological working memory (articulatory

suppression, repeatedly saying the word “the” aloud) [73].

2.2.4 Computation order

An important distinction between program tracing and mental arithmetic is that pro-

gram tracing is accompanied by the program source code, while mental arithmetic

uses a memorized procedure. The source code acts an external memory of the pro-

cess’s instructions, but also potentially for program state. For example, try tracing

this program:

1 x = 8

2 q = 3 + x

3 r = 6

4 print(x - r + q)

A “linear” strategy, the most similar to how a computer actually executes a pro-

gram, would trace from lines 1 → 2 → 3 → 4, committing each variable/value pair to

memory along the way. But you might have used an “on-demand” strategy: skim to

line 4, then look up the value of each variable as needed, e.g. by going 4 → 1 → 3 → 2.

Either strategy produces the correct answer, although on-demand strategies nominally

become more challenging in the presence of side effects (e.g. writing to a file) because

out-of-order tracing may not produce the same ordering of effects as linear tracing.

Vainio and Sajaniemi [66] observed that students tracing programs would adopt a

strategy they called “single value tracing.” In our terminology, students would trace

on-demand with respect to variables assigned to constants. In the example above,

a student might ignore line 1 (a “trivial” value in their words) and skip to line 2,

looking up the value of x on demand. However, we do not know generally how often

people will adopt a particular strategy, or how strategy relates to working memory.

For more complex programs (e.g. with control flow, indentation, methods, etc.)

eye-tracking studies of programmers have shown that programmers will read programs

non-linearly. Busjahn et al. [74] found that the gaze path of expert programmers was

more similar to following control flow from top-to-bottom than to reading line-by-line
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k = 4
w = 1
s = w - k
j = 5
v = 8
u = v + j
x = u - s

def x(): return u() - s()
def u(): return v() + j()
def s(): return w() - k()
def v(): return 8
def j(): return 5
def w(): return 1
def k(): return 4

Abstract Variables Functions

Figure 2.2: Three equivalent representations of the arithmetic expression (1 − 4) −
(8 + 5). Left is an nameless/tree representation. Center is a topological sort of the
tree into a program using variables. Right is an arbitrary ordering of the nodes into
functions.

like a book. A replication of Busjahn et al. by Peitek et al. [75] further found that

more linear programs (e.g. with fewer function calls) correlated to less vertical eye

movement.

2.2.5 Control flow

When tracing a program, a person needs to know what instruction to execute next,

i.e. how to follow the program’s control flow. If a person adopts a linear tracing

strategy in a straight-line program, they only need to know the “instruction pointer”,

or the current position in the program. A person can trivially determine whether a

line has been previously executed (above the pointer), or still needs to be executed

(below the pointer).

In what situations, then, does a person need to remember more about control

flow than the instruction pointer? Consider the three equivalent representations of

an arithmetic expression shown in Figure 2.2. A trace through these programs is

akin to a walk around the expression tree. For example, linearly tracing the variable

program in Figure 2.2 starts from the leaves: observing 1 and 4, then computing 1−4,

and so on. By contrast, an on-demand tracing strategy for the variable program starts

at the root: observing that the goal is u - s, then computing u = v + j, and so

on. A standard tracing strategy for the function program should look similar to the

on-demand tracing strategy for the variable program: start with x(), observe that x



CHAPTER 2. COGNITION AND PROGRAMMING 30

depends on u() - s(), then compute u() and so on.

Because the variable program must be a topological sort of the tree, tracing lin-

early ensures that an expression’s dependencies have always been computed before

computing the expression. However, this property is lost if the person adopts a

non-linear tracing strategy, or if the program itself is non-linear. When tracing the

variable program on-demand or tracing the function program, a person must main-

tain a set of previously visited program positions (i.e. a call stack). After visiting

x() → u() → v(), the tracer must remember that v() was contained in the definition

of u. This information must either be retrieved from the program text or stored in

working memory.

In the abstract, the on-demand tracing strategy has a task structure where a goal

(e.g. compute x = u - s) and its state (u = 13) become temporarily replaced

by a sub-goal (compute s) with separate state. Within cognitive load theory, this

hierarchical subgoal-within-goal task structure has been consistently shown to induce

working memory errors:

• Students solving basic Lisp programming problems make more errors attributable

to working memory when the problem uses a more deeply nested expression [76].

• Students solving multi-step geometry problems (e.g. “to compute angle X,

that’s 180 - Y, so now I compute Y”) make errors most commonly within sub-

goal stages where working memory load is highest [77].

• Students mentally distributing multiplication over algebraic expressions (e.g.

−3(−4 − 5x) − 2(−3x − 4)) make errors most commonly when expanding the

the second parenthetical, because the state of the first expansion must be held

in working memory while accomplishing the secondary goal [78].

Hence, we should expect to people make increased working memory errors when

tracing a program with nested control flow.



Chapter 3

Working Memory and Program

Tracing

As described in Section 2.2, working memory limitations likely influence a person’s

ability to trace a program. However, beyond qualitative observations like that of

Vainio and Sajaniemi [66], no further research has explicitly linked working memory

to program tracing. Therefore I ran a series of experiments to test the predictions

of working memory theory in the context of tracing. Specifically, I investigated two

high-level questions:

1. How much program state can a person hold in working memory?

2. How do working memory limitations for program state influence tracing strate-

gies?

Working memory theory suggests a few coarse answers: (1) people can’t remember

much state, and (2) they will forget relevant state while tracing and have to look

up that information on the fly. But I wanted to dive deeper into the nuances of

each question: how much program state can a person remember in pure recall vs.

interleaved with mental arithmetic? Do people linearly trace in the same fashion as

a computer, or do they optimize their strategies for working memory? To that end,

I ran four controlled experiments to elucidate the influence of working memory for

31
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program state on tracing. In each experiment, I carefully restrict the participants’

view on the program, for example by seeing a single line/function at a time, or blurring

lines of code until hovered. Then I use the participants’ responses and their mouse

movements to derive quantitative measures of working memory influence.

This chapter describes the design and results of each experiment, as well as an

interpretation of their implications for theory and design. We ran four experiments

to explore the role of working memory for tracing with two kinds of program state:

data (variable/value pairs) and control flow (tracking data dependencies).

3.1 Variable Recall

First, we sought to measure the total capacity of working memory for variable/value

pairs without any interference. This provides a baseline for later comparing how other

tracing tasks (e.g. arithmetic) affect working memory capacity. Specifically, we asked

two questions:

1. How many variable/value pairs can a person keep in working memory?

2. How does the kind of variable name affect its memorability?

In a realistic program, both of these questions are inevitably confounded by the se-

mantic relationship between a variable and its value. For example, greeting = "Hello"

is likely easier to remember than foo = "Hello" because “Hello” is a kind of greeting.

To avoid this confounder, we will consider the case where a variable has no particular

relationship to its value. We only consider numeric values, and we consider variable

names that are either common English nouns or single letters.

For the first question, our hypothesis is that participants should hold about 5

variable/value pairs in working memory, consistent with prior work on cued recall

in paired-associate learning [71, 72]. For the second question, we hypothesize that

English words should be more memorable than single letters due to having some

meaning if not a relevant meaning, and therefore should correspond to more pairs

remembered on average.
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3.1.1 Methodology

In this experiment, we tested working memory capacity via cued recall. Participants

were presented with several expressions of the form variable = value for 2s each.

They were then prompted to answer variable = ? for every observed pair. The

specific methodology and parameters are similar to those used in Nobel and Shiffrin’s

paired-associate experiments [71]. Within a given trial, we randomly generated 10

variable/value pairs. Each value is a digit from 0 to 9. We have two different con-

ditions for variable names: single-letters (A to Z), and common English nouns (e.g.

cave, tax, cherries). The participant was presented with one pair at a time for 2s per

pair. The presentation used programming syntax, e.g. x = 4. After the final pair,

the participant was prompted to input the corresponding value of all variables, e.g.

x = ?; f = ?. The order of prompts was randomized with respect to the order of

initial presentation. (The randomization was used to defeat mnemonic strategies that

simply memorized variables and values as two separate streams of serial data which

we observed in a pilot.) We then measured the participant’s accuracy as the number

of values correctly recalled.

Unlike some prior work on cued recall (e.g. Nobel and Shiffrin [71]), we did not

add a distractor task (e.g. mental arithmetic) inbetween the presentation and prompt

phases. In that setting, the goal is to measure long-term memory capacity, while our

goal is to measure working memory capacity. As a result, we may expect to see a

larger number of recalled pairs than in their experiment.

Each participant completed 4 trials per condition. The order of trials was counter-

balanced, and this experiment had 15 participants. In this and all other experiments,

we recruited participants with the following criteria and instructions:

• Participant pool: Participants were recruited from Amazon Mechanical Turk

within the United States and Canada. They were compensated a fixed amount,

estimated by timing the average duration of a pilot study and paid a corre-

sponding amount prorated at $15/hr.

• Required expertise: We required that participants have a basic competency

with tracing Python programs, which we ensured with a short pre-test before
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Figure 3.1: Number of values correctly recalled when cued with the paired variable,
averaged by participant. The red line indicates the mean value of each distribution.

each experiment. Participants also needed to correctly complete a sample trial

before doing an experiment.

• No memory aids: Participants were instructed to not use pen/paper or any

other external media as a memory aid.

• No distractions: Participants were asked to complete the experiment without

any visual or audio distractions, and to complete the experiment in one sitting.

3.1.2 Results

The distribution of average accuracy by participant in each condition is shown in

Figure 3.1. On average across both conditions, participants were able to recall a

mean/standard deviation of 6.5 (σ = 3.7) for letters and 7.2 (σ = 3.4) for nouns,

and a median of 7.5 and 9.0, respectively. Notably, 5 out of 15 participants achieved

an average of 9 or better in both conditions. Using a Wilcoxon signed-ranks test,
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the difference in accuracy between the conditions was not statistically significant

(T = 40.5, p = 0.45).

3.1.3 Discussion

For semantically-unrelated variable/value pairs, these results suggest that a person

can remember on average about 7 pairs in a pure memorization setting. This number

is higher than hypothesized, likely because our experiment did not include a distractor

tasks like the related work. The notion of average capacity may also be somewhat

tenuous if memory capacity varies so widely across individuals. Participants could not

remember significantly more pairs when random nouns were used as variable names.

This result suggests that nouns are not more memorable, or name memorability does

not matter if the semantic relationship of variable and value is arbitrary.

3.2 Variable Recall with Arithmetic

Program tracing involves the maintenance of program state while performing opera-

tions like arithmetic. So next, we consider: how does working memory capacity for

variable/value pairs change when interleaved with mental arithmetic? Within the

multi-component model of working memory [79], prior work has found that three-

digit mental arithmetic interferes with simultaneous tasks that use central executive

working memory, but not phonological working memory [73]. Single-digit mental

arithmetic problems have also been repeatedly confirmed to use central executive

working memory [67]. The cognitive action of updating working memory in a running

memory task is coordinated by central executive working memory [80], therefore we

hypothesize that participants should have a lower effective working memory capacity

for variable/value pairs than in the prior experiment.

3.2.1 Methodology

In this experiment, participants traced a straight-line program of variables assigned

to arithmetic expressions, one line at a time and without the ability to look back. We
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measured working memory capacity by the point at which the participant provides

an incorrect response. Specifically, we randomly generated programs of the form:

1 x = 3 + 4

2 t = x - 1

3 b = t + x

4 z = x - b

5 # ...and so on

Each line assigns a new variable to an arithmetic expression that involves randomly

selected variables from the previous lines (or a constant for lines 1-2). Variables names

are lower-case single letters and all constants are between 0 and 9. The only arithmetic

operations are addition and subtraction to keep the mental effort of any individual

operation relatively small. The program is 11 lines long, such that the participant

would have to remember 10 variables by the last line.

Within a given trial, we present the participant one line at a time. In the above

example, the participant would start by seeing: “x = 3 + 4. What is the value of

x?” After entering 7, that line disappears and the participant sees: “t = x - 1.

What is the value of t?” This way, the participant must commit the variable/value

pairs to working memory, instead of looking them up later. After entering a value,

the software waits for two seconds before proceeding to the next line. This process

repeats until the participant responds incorrectly.

An incorrect response cannot necessarily be attributed to a working memory fail-

ure. The participant could simply add two numbers incorrectly (which could itself

be a working memory failure, but for now we ignore that possibility). Using the

methodology of Campbell and Charness two-digit squaring experiment [70], we clas-

sify the incorrect response as either a substitution error or calculation error. Substi-

tution means the participant entered an a number that could have been computed

by mixing up two previously seen variables. For example, if the current state is

x = 7; t = 6; b = 13 and for x - b the participant enters 1, then we classify that

as a substitution of t for b, a failure of working memory. All other incorrect numbers

are considered calculation errors.

Each participant completed 10 trials, and this experiment had 15 participants
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Figure 3.2: Histogram of the average line of code at which a participant made a
mistake in Experiment 2.

(one participant was excluded for on average failing at the first line, leaving 14 par-

ticipants).

3.2.2 Results

Each participant finished the experiment at a particular line, either by providing an

incorrect response (final line 1-11) or completing the task without error (final line

12). The histogram of participants’ average final line is shown in Figure 3.2. Across

all participants, the average final line was 7.9 (σ = 3.7) and median was 8.0.

To compare these results to Experiment 1, first we have to model working memory

capacity in terms of the line of failure. If participants failed at line 8, then they either

calculated incorrectly or forgot at least one of 7 preceding variables, suggesting a

working memory capacity of 6 variables. Hence, we model effective working memory

capacity as line number− 2, indicating the average working memory capacity for this

experiment was 5.9. To test the hypothesis of whether mental calculations reduced

working memory capacity, we compared the distribution of working memory capac-

ity in Experiment 2 vs. the distribution of working memory capacity measured in

Experiment 1 in the letter condition. Using a Kruskal-Wallis test, the difference was

not significant (H(1) = 1.51, p = 0.21).

For each trial where the participant gave an incorrect response, we classified the
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Figure 3.3: Histogram of error types at each line in Experiment 2. Participants made
70% more substitution errors than calculation errors.

error as substitution or calculation. The distribution of errors by type is shown in

Figure 3.3. Of the 101 total errors, 53 were substitution and 48 were calculation.

The median calculation error happened at line 3.5, while the median substitution

error happened at line 7.0. Using a Kruskal-Wallis test, the difference was significant

(H(1) = 25.57, p < 0.001).

3.2.3 Discussion

These results do not support the hypothesis that performing mental arithmetic re-

duces working memory capacity. Participants in Experiment 2 on average remem-

bered fewer variables than Experiment 1, but the different is not statistically sig-

nificant. However, the experimental designs are somewhat different (e.g. continually

prompting for information vs. asking for it all at once) and the test is between-

subjects, so future work can control for these factors. Consistent with Campbell and
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Charness [70], we found that over half of mistakes can be attributed to substitution

in working memory. Specifically, errors could be explained by accidentally swapping

the association between variables in working memory, as opposed to forgetting them

entirely.

3.3 Straight-line tracing strategy

Next, we consider how working memory influences tracing for straight-line programs

when the complete program is available at all times. We investigate two questions:

1. Do participants demonstrate tracing strategies that diverge from linear execu-

tion?

2. Where in the program are participants most likely to have working memory

errors?

As described in Sections 2.3 and 2.4, we expect there to be two basic tracing strate-

gies: linear and on-demand. Prior work has shown that people will trace somewhat

out of linear order [66], but we do not know precisely to what extent or how often.

Hence our first goal for this experiment was to design a code viewing interface such

that we can deduce the participants’ strategies from their viewing patterns. Then

once we have identified which strategy a participant is using, we can hypothesize

where errors are likely to occur:

• For linear tracing, the primary source of working memory load should be re-

membering variable/value bindings. Based on Hitch’s model of errors in mental

arithmetic [68], a person is more likely to forget values computed earlier in the

program than later. Then participants should forget computations in the top

lines of the program (leaf nodes) more frequently than later lines (inner nodes).

• For on-demand tracing, the primary source of working memory load should be

tracking the current path in the expression tree. Based on the predictions of

cognitive load theory for hierarchical task structures [76, 77, 78], participants
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Figure 3.4: Interface for tracking the participant’s attention during tracing. Each
expression is blurred unless the particpant’s cursor hovers over it.

should make the most working memory errors at the deepest sub-goal (i.e. leaf

nodes). A working memory error would cause a participant to forget their path

to the leaf (i.e. inner nodes), so participants should revisit inner nodes more

frequently than leaf nodes.

3.3.1 Methodology

In this experiment, we track where a participant’s attention goes as they trace through

a straight-line program. Given the participant’s attention over time, we classify their

tracing strategy as linear or on-demand. Then we identify working memory errors in

their traces based on re-visits to lines of the program.

To track attention during tracing, we created a code viewing interface where each

expression is blurred by default, i.e. a restricted focus viewer [81] (we did not use an

eye-tracker so the experiment could be performed in a browser on Mechanical Turk).

The participant can move their mouse over an individual line to bring it into focus.

This way, the mouse acts like a foveal region in an eye tracking experiment — it
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Figure 3.5: Process of turning an expression tree into a program. Far has the highest
average distance between variable definition and use, while Close has the lowest.

represents the user’s current focus. W Figure 3.4 shows the interface. Because the

mouse may briefly hover over other lines while moving to a destination, we discard

any hover actions that occurred for less than 300ms. This number was selected

by inspecting the noise in the data, but in the spirit of multiverse analysis [82] we

confirmed that all significant results still hold with p < 0.05 for a threshold of 100ms

and 500ms.

To generate straight-line programs, we start by randomly generating an arithmetic

tree of size 7 with constants at the leaves and binary operators at the inner nodes.

Every node is given a random single-letter variable name. To map a tree to a straight-

line program, we have to pick an ordering that respects the dependencies in the tree,

i.e. any topological sort. The main difference between sorts is the distance from

a variable definition to its usage. For this experiment, we consider two conditions:

sorts with the highest average distance (“Far”), and lowest average distance (“Close”).

Figure 3.5 shows an example translation.

Each participant completed 5 trials in each condition (Far/Close), and this ex-

periment had 15 participants. 3 participants were removed due to exceptionally poor

performance (accuracy less than 20%), leaving 12 participants.
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Figure 3.6: Example traces of straight-line programs categorized by strategy. The
x-axis is time, and the y-axis is the lines of the program. Each dot is a hover event.

3.3.2 Results

First, for each trial, we classified the participant’s mouse movements as indicating

an on-demand or linear strategy. As a simple heuristic, we classify a trial as linear

if the first line is first visited before the last line, and on-demand otherwise. Across

all trials, 55% were classified as on-demand and 45% as linear. Most participants

appeared to individually prefer one strategy over another — 9 out of 12 participants

adopted a single strategy at least 70% of the time. Figure 3.6 shows a sample of

actual traces classified as linear (top) and on-demand (bottom) in the Far condition.

In these examples, we can already observe a few working memory influences:

• The top-left and top-center participants with the linear strategy traced lin-

early in the set of binary operations, but looked up constant values on-demand

(consistent with Vainio and Sajaniemi [66]). Others like the top-middle-left par-

ticipant traced linearly in both variables and binary operations.

• Some actions are clearly attributable to strategy vs. working memory error. For

example, the bottom-left participant goes from b = o + s to o = 6, indicating

an intentional on-demand shift in attention, but then returns to b before moving

to s = c - y. This indicates a working memory error of forgetting the second

operand to b. By contrast, the bottom-middle-left participant goes straight
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Figure 3.7: Distribution of average revisits to expression tree nodes, separated by
node type, tracing strategy, and program type. The difference between visits to inner
nodes and leaves was greater in the on-demand strategy than the linear strategy.

from u to t after observing v = u - t, indicating no comparable working

memory error.

To quantitatively analyze forgetting, we counted the number of times a participant

re-visited each line of the program. We then categorized the lines as either leaves of

the expression tree (constant variables) or inner nodes (binary operations). Figure 3.7

shows the distribution of average re-visits separated by participant’s strategy and the

program sorting condition. To test for differences between distributions, we fit a linear

mixed model with a three-way interaction of strategy, node type, and variable distance

as the fixed effects and participant as the random effect. The number of revisits was

the dependent variable. A one-way ANOVA showed a significant difference between

revisits in the interaction of node type and strategy (p < 0.001), but not variable

distance. We ran six post-hoc T-tests on all contrasts between pairs of the interaction,

adjusted by the Tukey method. We found:

• Participants on average revisited nodes 1.37 more times per node in the on-

demand strategy than the linear strategy (T (200) = 8.66, p < 0.001).

• Participants revisited inner nodes more than leaf nodes on average 2.1 more
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times in the on-demand strategy (T (200) = 9.95, p < 0.001), and 0.63 times in

the linear strategy (T (200) = 2.69, p = 0.038).

• Participants revisited inner nodes an average of 1.11 more times in the the

on-demand strategy than the linear strategy (T (216) = 4.23, p < 0.001).

3.3.3 Discussion

We have found evidence that participants will adopt both on-demand and linear

strategies for tracing straight-line code. The results also support our hypothesis

that working memory theory predicts where a participant will make errors given a

strategy: at leaves for linear, and at inner nodes for on-demand. Moreover, we also

found evidence that the linear strategy causes fewer working memory errors than on-

demand. That suggests that the cognitive load caused by tracking paths through the

tree is greater than storing variable/value pairs in working memory.

3.4 Function tracing strategy

Finally, we extend the methodology of the prior experiment to programs with func-

tions. Similarly, we want to understand: what strategies will people use to trace

programs with functions, and where are they most likely to make errors? Recall from

Section 2.4 that tracing a function program starting from the top-level function call

is equivalent to an on-demand tracing strategy in a straight-line program. When

projected onto the abstract expression tree, both traces start at the root and proceed

to the leaves.

However, now a linear strategy should be harder than before, because a person

has to mentally reconstruct the dependency graph and topological sort before trac-

ing linearly. Hence we hypothesize that more people should adopt an on-demand

strategy than in the prior experiment. For a given strategy, though, we hypothesize

that working memory errors should occur most frequently as predicted in the prior

experiment: on-demand traces forget the inner nodes, and linear traces forget the

leaves.
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def f():
  return 2 - 4
def g():
  return 1 + f()
def h():
  return 3 - 8
def i():
  return g() + h()
i()

Figure 3.8: Transformation of an expression tree into a sequence of functions. We only
convert binary operations into functions, because turning every node into a function
took too much per-trial time for participants in a pilot study.

3.4.1 Methodology

In this experiment, participants trace through a program with functions while we

track which function has their attention. Like the prior experiment, we randomly

generate an expression tree and convert it into a program with functions as shown

in Figure 3.8. Then to track the participant’s attention, we created a code viewing

environment where one function is displayed at a time, shown in Figure 3.9. The

participant is given a bank of buttons with the name of each function, and clicking

on the button goes to the function’s source, similar to an IDE. A participant’s trace

through the expression tree corresponds to their sequence of button clicks. The order

of buttons is randomized, so it bears no relationship with respect to the functions’

order of usage in the program.

Each participant completed 10 trials, and this experiment has 15 participants (1

was removed for poor performance, leaving 14 participants).

3.4.2 Results

First, we classified each trace as an on-demand or linear strategy. We used a simple

heuristic similar to before: if the participant visited the root function node first, they

used an on-demand strategy, and they used a linear strategy for visiting any other
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Figure 3.9: Experiment interface for showing participants one function at a time.

node first. Figure 3.11 shows several examples of traces around the expression tree

within each strategy. Out of 140 trials, 54% used a linear strategy and 46% used

an on-demand strategy. Like the prior experiment, 11/14 participants consistently

picked one strategy at least 70% of the time.

Next, we computed the average number of revisits to inner and leaf nodes in each

trace. The distribution of revisits by strategy and node type is shown in Figure 3.10.

As in the previous experiment, we fit a linear mixed model with strategy and node

type as fixed effects and the participant as a random effect, and the number of revisits

as the dependent variable. Using a one-way ANOVA, the only statistically significant

difference in revisits is the node type (F (263) = 41.06, p < 0.001).

3.4.3 Discussion

These results provide mixed support for our first hypothesis. It was not true that most

participants preferred an on-demand strategy. In fact, we found the preponderance

of linear traces somewhat bewildering — participants appeared to just click through

each function, remembering what they could and then synthesizing the information

into an answer at the end. However, the results do suggest that the linear strategy

had increased working memory load for function programs compared to straight-line

programs. In Experiment 4, there was not a statistically significant difference between

working memory errors in the on-demand and linear strategies, whereas on-demand
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Figure 3.10: Distribution of revisits to nodes by node type and strategy. Participants
visited more inner nodes than leaf nodes in the on-demand strategy, but not in the
linear strategy.

traces contained more errors in Experiment 3.

The results do not support our second hypothesis, that participants revisit nodes

as predicted by working memory theory. The relative revisits to inner vs. leaf nodes

was not different between strategies. One possible explanation is that the notion of a

linear strategy is different for the straight-line interface than the function interface.

The function interface does not expose the call graph, so a participant cannot easily

walk from the leaves to the root as they can when scanning top-to-bottom in the

straight-line code.

3.5 General Discussion

In summary, we made six findings from our experiments:

• A person can hold about 7 variable/value pairs in working memory, and can

remember variables named as random nouns equally well as random letters.

• Single-digit mental arithmetic does not reduce WM capacity for variable/value

pairs.



CHAPTER 3. WORKING MEMORY AND PROGRAM TRACING 48

a

t

6

e

3

j

8

7

o

4

2

main

1

5

e

q

2

o

8 7

s

3 5

13

w

9 11

main

1

10 124 6

a

p

4

d3

t

5

main

q

1

2

a u2

g

j

6

5

s

3

main

1

4

g

o

6

k5

s r

3 2 4

main

1

b

k

2

u

d

7

c

3

6

4

5

8

main

1

O
n-

de
m

an
d 

st
ra

te
gy

Li
ne

ar
 st

ra
te

gy

a

x

5

e

o

7

m

2 8 10

3

main

1

4

6 11

9

h

j w3

main

y

1

2

s5

4

Figure 3.11: A sample of traces from the participants, grouped by strategy. Each tree
represents a dependency graph of function calls e.g. j → e means the definition of j
calls e().

• When recalling values for mental arithmetic, a majority of errors could be ex-

plained by recalling a value bound to a different variable held in WM.

• People will trace a straight-line program both linearly and on-demand, and a

given person is likely to stick with one strategy.

• People will make WM errors in different parts of the program based on their

tracing strategy, and on-demand strategy causes more WM errors than the

linear strategy for a straight-line program.
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Figure 3.12: Left: the Lean theorem proving language inside its Emacs IDE. The
right pane shows all variables in scope on the current line in the left pane. Right: the
DrRacket IDE shows all usages of a variable on mouse hover.

• People will not necessarily trace a function in order of execution.

These findings occurred within a controlled experimental setting and within a spe-

cific application domain. As with all laboratory / cognitivist research, this naturally

raises the question — do these results generalize to realistic programs? And how can

we practicably apply these results to high-level design?

3.5.1 Limitations

Our findings are not universal statements about e.g. all variable/value pairs. For

example, if a person tries to remember x = [1, 5, 7], the list is a more complex

object to be stored in WM than a single digit. A person likely cannot remember

as many variable/list pairs as variable/number pairs. More generally, several factors

limit the generality of our current results and point to interesting future work.

• Data types: we focus on integers in this work. But practical programs have

booleans, strings, structs, classes, and so on. Variables assigned to values of

different data types might be less likely to be swapped in WM.
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• Mental operations: we focus on single-digit mental arithmetic with addi-

tion and subtraction. Harder mental operations may shift the balance e.g. in

Experiment 2 and interfere with WM for program state.

• Mutability: we only test programs that assign to variables once, i.e. immutable

state. Imperative programs often rely on in-place updates to databases, files,

or so on. Mutating variables means updating an existing association between a

variable/value in WM rather than adding a new one, which may be subject to

different kinds of interference. Mutation also potentially increases the difficulty

of on-demand tracing.

• Control flow constructs: we used functions due to their close relationship

to on-demand tracing. Standard structured programming constructs like if-

statements and for-loops should also be investigated for their WM influence.

• Schematic structure: our programs do not solve any common problem, e.g.

sorting a list or computing the quadratic formula. A person’s tracing strategies

and WM encodings of program state would likely differ for programs with a

recognizable structure, i.e. pieces that fit into a known schema.

3.5.2 Implications for theory

One goal of this work is to contribute towards a broader theory of program comprehen-

sion: how do people understand programs, and how do aspects of cognition influence

that process? We focused on program tracing because it is a likely component skill of

comprehension. We have shown that WM both limits how much state a person can

remember, and causes different kinds of errors based on tracing strategies. However,

most popular models of program comprehension focus largely on schemata/plans as a

mechanism of comprehension, e.g. the seven models in the survey of von Mayrhauser

and Vans [83]. We think that tracing deserves a closer look to understand its role in

comprehension.

One major finding of our work is that different people will adopt substantially

different tracing strategies for the same program. We demonstrated that both the
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linear and on-demand strategies are common, and that individuals seem to prefer one

strategy. But we do not yet know: what factors made a person pick one strategy

over the other? And in what situations is a particular strategy better than the other?

We found that linear tracing caused fewer WM errors than on-demand tracing for

straight-line programs, but not for function programs. Future work should identify

other factors that influence this trade-off.

Additionally, tracing as a task likely lies on a continuum of abstraction. We fo-

cused on tracing with concrete inputs and outputs, but one can imagine tracing over

symbolic values, akin to the method of abstract interpretation in static analysis [84].

In this setting, variables are represented not by values but by properties. For ex-

ample, if x > 0 and y = x + 1, then we know y > 1. Abstract tracing likely

introduces even more WM load than concrete tracing. For example, while tracing

“if (x != NULL) { .. }”, the property “x != NULL” must be kept in working mem-

ory while reasoning about the body of the if-statement. A WM account of tracing

should consider tracing at all levels of abstraction.

3.5.3 Implications for design

Another goal of our research is to generate design principles for reducing WM load

that can be applied to IDEs, refactoring tools, style guides, and so on. We suggest a

few guidelines that extend from our findings. As a general framing, it’s important to

observe that every experiment had significant between-subjects variability in memory

capacity, time to completion, accuracy, strategy, and so on. Accessible programming

tools need to account for working memory differences, e.g. tool designers should not

assume that their users will be able to remember as much as themselves.

Reduce variable scope.

If a program has many overlapping variables, it will be hard for a person to keep the

variables’ values in working memory as shown in Experiments 1 and 2. Therefore,

programs should avoid having many variables within a given scope where possible.

One implementation of this suggestion is to put a variable’s definition as close as
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possible to its usage. This advice is consistent with most modern style guides, for

example the Google C++ Style Guide [85]. Our work confirms that this style has

genuine cognitive benefits, as opposed to being a matter of preference.

This advice could also be mechanized as a complexity metric. The compiler tech-

nique of liveness analysis can identify when the live ranges (point from definition of

variable to its last use) of variables will overlap. To test the technique, we applied

it to every function in the Python standard library. We identified that some func-

tions have up to 18 overlapping variables! We also found that functions with many

parameters had a high complexity score, since they effectively are declaring dozens

of variables at the top of a block rather than close to their usage, a de facto violation

of the style rule.

Visualize variable context.

As shown in Experiment 3, people with different tracing strategies will make different

kinds of WM errors, and so will need different kinds of tools to augment WM. A

person tracing linearly needs to keep track of previously seen variables, and so a

programming environment can visualize information about all the variables in scope

up until a particular line. For example, the Lean interactive theorem prover [86] in

Emacs (Figure 3.12, left) will show all the variables in scope at the current line based

on the editor’s mouse position. Lean only shows the name and type of the variable,

but a visualization could also show the last line of code modifying that variable, or

other semantic information.

By contrast, a person tracing on-demand needs to keep track of their path through

the variable dependency graph so they can follow it back. If a person forgets a part

of their path, a programming environment can visualize information about where a

variable is used to help refresh their memory. For example, the DrRacket IDE [87]

(Figure 3.12, right) will show all references to a variable on mouse hover. The point

is that these ideas already exist in some form within (admittedly niche) programming

tools, but every IDE should support both of these visualizations to reduce WM load

during program tracing.
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Externalize program state.

Many of our experiments would be significantly different if the participants had been

tracing on paper with a pen, able to write down program state such as variable

values or flow markers. Providing programmers the ability to externalize their tracing

process could significantly reduce working memory load.

However, nearly all interfaces for displaying code outside of an IDE are read-

only. For example, GitHub has a specialized interface for pull requests that propose

a change to a code base. The entire point of this interface is for a reviewer to

understand a change, but the interface provides no “margin notes” or other features

for throwaway annotations. Consistent with the theory of distributed cognition [88],

code comprehension tools should consider how to enable programmers to externalize

their thought process to the environment without needing to print out code.



Chapter 4

Program Slicing: Applying

Cognitive Theory to Design

As established in Chapter 2, there is a large body of theories about cognition and

programming. Chapter 3 further contributes to this body concerning the role of a

specific facet of cognition (working memory) in a specific task (program tracing).

Theories like these are descriptive: given a task, we can predict that a particular kind

of person will think a certain way. But my ultimate goal is to make these theories

prescriptive: to guide the design of new programming tools.

One approach is to generate cognitive design principles, as described by Tversky

et al. [89] for the case of visualizations:

“Our approach combines research in cognitive and computer science in

three iterating steps:

1. Revealing the mental representations people have for a given domain

and the visual devices they use to convey it, yielding domain cogni-

tive design principles.

2. Developing algorithms that create effective visualizations based on

cognitive design principles.

3. Testing the visualizations to insure that they adequately convey the

desired information.”

54
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For example, Tversky et al. show that cognitive design principles can inform tools

for automatically generating visualizations like route maps. Based on psychological

experiments that elicited participants’ mental models of geography, they determined

that “people don’t accurately apprehend or represent distances or angles.” This

observation lead to the cognitive design principle that “geometric information can

be simplified to increase emphasis on the turning points.” This design principle was

applied to create an algorithm for automatically generating maps that are easier for

people to follow than more realistic maps [90].

Inspired by this approach, I set out to apply it to programming by leveraging

the experimental results in Chapter 3. I showed that a person’s working memory

significantly limits their ability to mentally maintain even small quantities of pro-

gram information at a time. The question then becomes: what higher-level mental

strategies will programmers adopt to overcome this cognitive limitation?

One implication of working memory limitations for many cognitive tasks is the

reduction of working context. When solving a complex problem, a person cannot

hold all possible factors in their head at once, and therefore must focus on smaller

subproblems that eventually lead to the final answer. For example, when a problem

involves a search space, people will only consider a single solution at a time and explore

the space depth-first, as shown in chess [91] and abstract logical reasoning [92].

IDE extensions targeted at reducing working context have consistently shown to

improve programmer productivity. For example, in the Code Bubbles IDE [93], if two

functions are nearby in the call-graph, then they are placed adjacent to each other

in the IDE canvas, which helps programmers focus on just the code relevant to a

particular code path. The Mylar plugin for Eclipse [94] integrates a task list into the

IDE which tracks which files are relevant to a given task, which helps programmers

who are switching between multiple tasks.

One challenge with both of these approaches is they still require significant user

effort to learn and use — they are quite far from the ambient visualizations described

in Section 1.2. So I started thinking: are there automatic program analyses that

could help programmers reduce their working context? After going back through

the old programming/psychology literature, I saw a clear connection to one specific
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technique: program slicing.

4.1 The Cognitive Basis for Slicing

Program slicing is unique in the history of programming tools for having a tight con-

nection between cognitive psychology and PL theory. Slicing was first described by

Mark Weiser1 in his 1979 Ph.D. thesis “Program Slices: Formal, Psychological, and

Practical Investigations of an Automatic Program Abstraction Method” [95]. The

work is best known from his two later papers: “Programmers Use Slices When De-

bugging” [96] and “Program Slicing”[97].

In the first paper [96], Weiser had read of qualitative evidence for a variety of ways

that programmers debug programs:

Gould [98] reports that many programmers start debugging by carefully

reading the faulty program from top to bottom, without ever bothering

to look closely at the erroneous program output. Dijkstra [99] and others

have proposed that debugging time could be shortened by rigorous rea-

soning about a program’s correctness. However, perhaps the most basic

method of debugging is to start at the point in the program where an error

first becomes manifest, and then proceed to reason about the sequence of

events (as verified by the program text) that could have led to that error.

[...] Gould [98] and Lukey [100] report instances of programmers working

backwards from an error’s appearance.

To test the hypothesis that programmers worked backward from a bug, Weiser de-

vised an experiment using the memory-recall methodology described in Section 2.1.2.

Programmers were given a buggy Algol-W program and asked to debug it. After-

wards, programmers were shown program fragments (from the original program or

distractors), and asked to rate their certainty of whether the fragments appeared

1Weiser would later go on to become a pioneer in HCI, developing the concept of ubiquitous
computing as a manager at the famous Xerox PARC research lab. As someone who also happens to
be writing a Ph.D. thesis about cognition and programming, if you need someone to manage your
research lab, let me know!
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in the original program. Weiser compared the accuracy of ratings across different

plausible fragments such as “relevant slice” (slice of the bug), “relevant contiguous”

(contiguous code overlapping the relevant slice), and others.

The results showed that the relevant slice was indeed recognized more frequently

than an irrelevant slice or a random set of code, although not more frequently than

the relevant contiguous code. Weiser interpreted this result as evidence that program-

mers mentally formed slices when debugging. Later experiments would also show that

programmers who focused on a bug’s slice (vs. other code) would be more likely to

correctly fix a bug [101]. Therefore as a cognitive design principle, a tool that auto-

matically computes slices would theoretically support the natural mental processes

of programmers in tasks like debugging.

4.2 Slicing Definitions and Techniques

In his subsequent paper [97], Weiser laid out a formal definition of a program slice,

and he also described the first algorithm for computing slices in imperative languages.

Slicing research continues to use much of Weiser’s problem definition and terminology,

so it’s worth understanding his original formulation.

4.2.1 Weiser’s Technique

Weiser’s goal was to capture the concept of a “projection” of a program’s behavior.

For example, say a person only cared about some specific program element, like the

value of a particular variable x. Then the x-projection of the program is the smallest

subset of code needed just to compute x exactly the same as in the original program.

Variables take on different values at different lines of code, so the projection must

also be specified at a particular program location.

Therefore Weiser defined a slice of a program P in terms of a slicing criterion: a

statement i and a set of variables V = {x}. Given a criterion C = ⟨i, V ⟩, then the

slice S of P on C is the subset of code such that executing S produces exactly the

same execution trace as P for the variables V at statement i.



CHAPTER 4. PROGRAM SLICING 58

1 fn main() {
2 let mut sum = 0;
3 let mut i = 1;
4 while i < 11 {
5 a(&mut sum, &mut i);
6 }
7 }
8

9 fn add(a: &mut i32, b: i32) {
10 *a = *a + b;
11 }

12 fn a(x: &mut i32, y: &mut i32) {
13 add(x, *y);
14 increment(y);
15 }
16

17 fn increment(z: &mut i32) {
18 add(z, 1);
19 }

Figure 4.1: Example of the difficulty of whole-program slicing used by Horwitz et al.
[102]. The code snippets have been adapted from Algol-W to Rust.

For a simple imperative language (imagine C without pointers), statically com-

puting S within a single function is relatively straightforward. Starting at the slicing

criterion, the slicer works backwards following data and control dependencies. For

example, if C = ⟨x := y+ z, {x}⟩, then slicer would add y and z to the set of relevant

variables, and transitively include all statements that affect y and z.

To handle programs with multiple functions, Weiser took a simple approach: imag-

ine computing the slice of a variable y inside a function f(x){. . .} where y depends

on x. Then all calls to f (and their dependencies) are added to the slice.

4.2.2 Context-Sensitive Slicing

One subsequent line of work recognized that Weiser’s simple approach to function-

calls could be imprecise, i.e. code that should not be part of the slice was included by

the slicer. For example, Horwitz et al. [102] showed that when computing the slice of

z in increment in Figure 4.1, that Weiser’s algorithm would include every line in the

slice. However, the call to add(x, *y) on line 13 is irrelevant as it has no influence

on any possible value of z.

This issue is what Horowitz et al. called “the calling-context problem”, and what

today is more concisely named context-sensitivity. The behavior of a function depends

upon how it is called (the context), and so a whole-program analysis must be sensitive
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to these contexts to produce a precise answer. Context-sensitivity affects any whole-

program analysis, in particular pointer analysis (determining which memory locations

a pointer can point-to at runtime).

The design of context-sensitive algorithms has occupied the static analysis re-

search field for over three decades and counting. In short, the challenge is that the

set of possible contexts can be quite large. Whaley and Lam [103] reported that some

real-world applications have over 1014 contexts. Therefore a context-sensitive anal-

ysis must trade-off precision (how many contexts are considered) and performance

(execution time and memory usage).

Horwitz et al. [102] provided the first algorithm for context-sensitive program

slicing by construction of a system dependence graph (SDG). This data structure

combined a function-call graph with a dataflow graph to encoding calling contexts

with greater precision. Horwitz et al. did not provide any experimental results at the

time to justify the precision claim, but it was supported by later findings [104].

Many more techniques have been invented for handling context-sensitivity, es-

pecially for tasks beyond slicing. For example, context-sensitive analysis has been

reduced to problems like graph reachability [105] and inference on binary decision

diagrams [103]. But SDGs seem to be the most common technique used in program

slicers, e.g. the recent “dg” slicer for LLVM [106] uses SDGs.

4.2.3 Slicing Variations

Since Weiser’s original formulation, researchers have created a number of slicing vari-

ations to address both human-centered and analysis-centered issues. Korel and Laski

[107] introduced dynamic program slices (as distinct from Weiser’s static slices) with

the following motivation:

“In debugging practice, however, we typically deal with a particular in-

correct execution and, consequently, are interested in locating the cause of

incorrectness (programming fault) of that execution. For this reason we

are interested in a slice that preserves the program’s behavior for a spe-

cific input, rather than that for the set of all inputs for which the program
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terminates.”

Korel and Laski believed that dynamic slices could be substantially smaller than

static slices in some situations and therefore more useful for debugging. Later work

continued to introduce yet more variations of program slicing:

• Conditioned slicing generalized dynamic slicing by allowing a slicing criterion

to specify an arbitrary predicate on the sliced values, rather than an equality

constraint [108].

• Amorphous slicing relaxed the syntactic constraint on slices to allow for simpler

programs that are behaviorally equivalent but not a syntactic subset of the

original code [109].

• Thin slicing relaxed the semantic constraint on slices to contain a fully ex-

ecutable program, allowing slices to contain only immediate (vs. transitive)

influences on a particular sliced value [110].

The above list is naturally non-exhaustive, but it still represents the breadth of ap-

proaches to modifying Weiser’s formulation of slicing to fit different programmer

needs.

4.2.4 Studies on the Human Factors of Slicing

Despite decades of research into program slicing, and despite the origins of the field

stemming from cognitive psychology, very little work has tried to analyze the human

factors of slicing. One review found that “only 3 out of 111 papers on slicing based

debugging techniques have considered issues with the use of the techniques in prac-

tice” [111]. Only two of those papers actually involve the use of a program slicer, so

we focus on those two here.

The first study of slicing was conducted by Weiser and Lyle [12], which compared

debugging times within a bespoke graphical slicing environment called Focus. They

said:
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“We were unable to show that having a slicing tool helped reduce debug-

ging time. If anything the trend was the other way: slicer users took a

little longer to debug, possibly because they were playing with their new

command.

This experimental result was disappointing because it had seemed to fol-

low from the mental use of slices that a slicing aid would be useful. Per-

haps more learning time, or larger programs would have given a different

result.”

The only other study that I could find was conducted by Kusumoto et al. [13].

They had 34 undergraduate students debug six Pascal programs (about 40 LOC

each), separated into one group with a slicer and one without. They found that

students with the slicer took 41 minutes to find all the bugs, while students without

the slicer took 49 minutes, and the different was statistically significant. However,

Kusumoto et al. do not provide any details on how students used slices to accomplish

the debugging task.

Another relevant success story is the Whyline tool developed by Ko and Myers

[53]. Whyline used dynamic program slicing as a component of a debugging interface

designed for the Alice game engine (and later for Java GUIs). In a user study, they

found that users spent 8× less time on debugging with Whyline than a traditional

interface. This striking result demonstrates that a slicing-based debugging tool can

be very effective in certain contexts. However, Whyline combines slicing with many

other ideas such as the explicit enumeration and presentation of “why”/“why not”

questions, and so it is difficult to pinpoint the extent to which slicing specifically

helped in their interface.

Ultimately, there is only light cognitive and empirical evidence that slices would be

directly useful to programmers. Moreover, this evidence was generated on unrealistic

tasks — programmers today do not work with small 40-line Pascal programs, but

rather with sprawling codebases written in complex programming languages. As

Parnin and Orso [111] claim, the conventional wisdom is that slicing doesn’t work in

these settings because “the sets of relevant statements identified are often still fairly
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large.”

Yet this explanation is not wholly satisfying. Binkley et al. [112] found in an

empirical analysis of slice sizes in realistic codebases that the average slice is 1/3 the

size of the entire program. Based on this result, they write:

There are many programs that have sets of very small slices, making these

programs highly amenable to slice-based approaches to comprehension.

Even for programs with larger slices, any reduction in code size is going

to be beneficial to comprehension, since it avoids the human wasting time

on code not relevant to the comprehension question at hand. The fact that

the study found very few extremely large slices indicates that optimism is

not misplaced.

Notably, their results were generated by GrammaTech CodeSurfer, one of the

few industrial-grade program slicers in existence. GrammaTech never wrote anything

publicly about customers’ experiences using CodeSurfer, so we do not know the extent

to which programmers have found slicing useful (or not) in realistic settings.

4.3 The Seed of a New Slicer

After realizing how little evidence existed about the utility of slicing, my first instinct

was to run a user study. I wanted to find an program slicer that programmers in a

given language could easily adopt, meaning subject to the following constraints:

1. Applicable to common language features: the language being analyzed should

support widely used features like pointers and in-place mutation.

2. Zero configuration to run on existing code: the analyzer must integrate with

an existing language and existing unannotated programs. It must not require users

to adopt a new language designed for information flow.

3. No dynamic analysis: to reduce integration challenges and costs, the analyzer

must be purely static — no modifications to runtimes or binaries are needed.
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4. Modular over dependencies: programs may not have source available for de-

pendencies. The analyzer must have reasonable precision without whole-program

analysis.

However, these constraints turned out to be quite demanding. There are a few

static program slicers such as the db slicer for LLVM [106] and the Frama-C slicer

for C [113]. But these slicers require whole-program analysis to handle function calls,

which violates the fourth requirement of being modular over dependencies. For ex-

ample, consider computing the slice of the return value in this C++ function:

1 // Copy elements 0 to max into a new vector

2 vector<int> copy_to(vector<int>& v, size_t max) {

3 vector<int> v2; size_t i = 0;

4 for (auto x(v.begin()); x != v.end(); ++x) {

5 if (i == max) { break; }

6 v2.push_back(*x); ++i;

7 }

8 return v2;

9 }

Here, a key part of the slice is that v2 is influenced by v: (1) push_back mutates

v2 with *x as input, and (2) x points to data within v. But how could an analyzer

statically deduce these facts? For C++, the answer is by looking at function imple-

mentations. The implementation of push_back mutates v2, and the implementation

of begin returns a pointer to data in v.

Analyzing such implementations violates the modularity requirement, since these

functions may only have their type signature available. In C++, given only a func-

tion’s type signature, not much can be inferred about its behavior. But this ob-

servation raises an intriguing question: could a more sophisticated type system be

leveraged to assist in a static analysis like program slicing?
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4.3.1 Information Flow ≈ Slicing

After two decades of intense interest following the publication of Weiser’s paper [97],

research on program slicing started to decline. But at the same time, a new research

topic started to gain steam: information flow. First described by Denning [114] in

1976, information flow describes whether one value can affect another. Information

flow is commonly used in security research to determine whether a secure value (like

a password) can affect an insecure value (like a string printed to the console). The

detection of these leaks is called information flow control (IFC).

Information flow nominally seems somewhat different from program slicing, but

both problems reduce to the same underlying question: does one part of a program

depend on another? This reduction was formalized by Abadi et al. [16] who demon-

strated that both information flow analysis and program slicing could be embedded

within a dependency calculus that tracked which parts of a program a given variable

depended on.

Program slicing is principally viewed as a program analysis problem: take a given

language, and try to deduce some property of it. But research in IFC has gone a step

beyond to design the language around the analysis. Languages like JFlow [115] and

FlowCaml [116] added IFC to Java and OCaml, respectively, by changing the syntax

and type system of the underlying language. For instance, in FlowCaml every type

is annotated with a security level ℓ (e.g. intℓ) that represents the set of permissions

associated with a value of that type.

Since these languages have information flow built-in to the type system, it should

be relatively easily to implement a program slicer for these languages. However, IFC-

oriented languages like JFlow and FlowCaml are research prototypes, and so there

are very few users of these languages for me to study. Therefore I needed to look

elsewhere to find a suitable language that could play host to a new slicer.

4.3.2 Ownership Types

Recall from the C++ example at the beginning of this section that the core challenges

in practical program slicing are modularly analyzing pointers and mutation. One
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of the main insights of this dissertation is these are the same challenges faced by a

memory safety analysis. That is, a tool to statically identify memory safety violations

must understand how a program uses memory, which entails understanding pointers

into memory and mutations (including frees) of objects in memory.

Ownership types are a mechanism for analyzing memory safety in the type sys-

tem that have been recently popularized in Rust. Ownership emerged from several

intersecting lines of research on linear logic [117], class-based alias management [118],

and region-based memory management [119]. The fundamental law of ownership is

that data cannot be simultaneously aliased and mutated. Ownership-based type sys-

tems enforce this law by tracking which entities own which data, allowing ownership

to be transferred between entities, and flagging ownership violations like mutating

immutably-borrowed data.

To see the connection between ownership types and slicing, consider computing

the slice of the return value in this Rust implementation of the same copy_to function:

1 fn copy_to(v: &Vec<i32>, max: usize) -> Vec<i32> {

2 let mut v2 = Vec::new();

3 for (i, x) in v.iter().enumerate() {

4 if i == max { break; }

5 v2.push(*x);

6 }

7 return v2;

8 }

Focus on the two methods push and iter. For a Vec<i32>, these methods have the

following type signatures:

1 fn push(&mut self, value: i32);

2 fn iter<'a>(&'a self) -> Iter<'a, i32>;

To determine that push mutates v2, we leverage mutability modifiers. All references

in Rust are either immutable (i.e. the type is &T) or mutable (the type is &mut T).

Therefore iter does not mutate v because it takes &self as input (excepting interior

mutability, discussed in Section 5.3.3), while push may mutate v2 because it takes

&mut self as input.
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To determine that x points to v, we leverage lifetimes. All references in Rust are

annotated with a lifetime, either explicitly (such as 'a) or implicitly. Shared lifetimes

indicate aliasing: because &self in iter has lifetime 'a, and because the returned

Iter structure shares that lifetime, then we can determine that Iter may contain

pointers to self.

In sum, both the pointer and mutation problems can be approximated by using

ownership types. This solution is consistent with all the criteria: Rust satisfies the

criteria for a practical language. By using the type system, the analysis is static and

modular. Finally, the annotations needed for this analysis must already be provided

by the programmer to satisfy Rust’s memory safety checks.

Based on this insight, I set out to design the infrastructure that would underlie a

Rust program slicer, namely an engine for information flow analysis. As a part of the

design, I formalized the theory of this insight so as to argue for the formal correctness

of this approach.



Chapter 5

Modular Information Flow through

Ownership

Based on the insight described in Section 4.3.2, I developed a theoretical foundation

for analyzing information flow in ownership-based languages. I applied this theory to

the design of Flowistry, a system for analyzing information flow in Rust programs.

This chapter describes the theory, implementation, and evaluation of Flowistry.

5.1 Analysis

Inspired by the dependency calculus of Abadi et al. [16], our analysis represents in-

formation flow as a set of dependencies for each variable in a given function. The

analysis is flow-sensitive, computing a different dependency set at each program lo-

cation, and field-sensitive, distinguishing between dependencies for fields of a data

structure.

While the analysis is implemented in and for Rust, our goal here is to provide a

description of it that is both concise (for clarity of communication) and precise (for

amenability to proof). We therefore base our description on Oxide [120], a formal

model of Rust. At a high level, Oxide provides three ingredients:

1. A syntax of Rust-like programs with expressions e and types τ .

67
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2. A type-checker, expressed with the judgment Σ;∆; Γ ⊢ e : τ ⇒ Γ′ using the

contexts Γ for types and lifetimes, ∆ for type variables, and Σ for global functions.

3. An interpreter, expressed by a small-step operational semantics with the judgment

Σ ⊢ (σ; e) → (σ′; e′) using σ for a runtime stack.

We extend this model by assuming that each expression in a program is au-

tomatically labeled with a unique location ℓ. Then for a given expression e, our

analysis computes the set of dependencies κ ::= {ℓ}. Because expressions have ef-

fects on persistent memory, we further compute a dependency context Θ ::= {p 7→ κ}
from memory locations p to dependencies κ. The computation of information flow

is intertwined with type-checking, represented as a modified type-checking judgment

(additions highlighted in red):

Σ;∆; Γ;Θ ⊢ eℓ : τ • κ ⇒ Γ′; Θ′

This judgment is read as, “with type contexts Σ,∆,Γ and dependency context Θ, e

at location ℓ has type τ and dependencies κ, producing a new dependency context

Θ′.”

Oxide is a large language, so rather than covering every rule at once, we first focus

on a few key rules that demonstrate the novel aspects of our system. We first lay the

foundations for dealing with variables and mutation (Section 5.1.1), and then describe

how we modularly analyze references (Section 5.1.2) and function calls (Section 5.1.3).

Finally, the remaining rules are provided for completeness in Section 5.1.4.
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5.1.1 Variables and Mutation

The core of Oxide is an imperative calculus with constants and variables. The abstract

syntax for these features is below:

Variable x Number n

Path q ::= ε | n.q

Place π ::= x.q

Constant c ::= () | n | true | false

Base Type τb ::= unit | u32 | bool

Sized Type τ si ::= τb | (τ si1 , . . . , τ sin ) | . . .

Expression e ::= c | π | let x : τ sia = e1; e2 |

π := e | e1; e2 | . . .

Constants are Oxide’s atomic values and also the base-case for information flow.

A constant’s dependency is simply itself, expressed through the T-u32 rule:

T-u32

Σ;∆; Γ;Θ ⊢ nℓ : u32 • {ℓ} ⇒ Γ;Θ

Variables and mutation are introduced through let-bindings and assignment ex-

pressions, respectively. For example, this (location-annotated) program mutates a

field of a tuple:

let t : (u32, u32) = (1ℓ1 , 2ℓ2); t.1 := 3ℓ3

Here, t is a variable and t.1 is a place, or a description of a specific region in

memory. For information flow, the key idea is that let-bindings introduce a set of

places into Θ, and then assignment expressions change a place’s dependencies within

Θ. In the above example, after binding t, then Θ is:

Θ = {t, t.0, t.1 7→ {ℓ1, ℓ2}}
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After checking “t.1 := 3”, then ℓ3 is added to Θ(t) and Θ(t.1), but not Θ(t.0). This is

because the values of t and t.1 have changed, but the value of t.0 has not. Formally,

the let-binding rule is:

T-Let

Σ;∆; Γ;Θ ⊢ e1 : τ
si
1 • κ1 ⇒ Γ1; Θ1

Γ;∆1 ⊢ τ si1 ≲ τ sia ⇒ Γ′
1 Θ′

1 = Θ1[∀π□[x] . π 7→ κ1]

Σ;∆; gc-loans(Γ′
1, x : τ sia ); Θ

′
1 ⊢ e2 : τ

si
2 • κ2 ⇒ Γ2, x : τ sd; Θ2

Σ;∆; Γ;Θ ⊢ let x : τ sia = e1; e2 : τ
si
2 • κ2 ⇒ Γ2; Θ2

Again, this rule (and many others) contain aspects of Oxide that are not essential

for understanding information flow such as the subtyping judgment τ1 ≲ τ2 or the

metafunction gc-loans. For brevity we will not cover these aspects here, and instead

refer the interested reader to Weiss et al. [120]. We have deemphasized (in grey) the

judgments which are not important to understanding our information flow additions.

The key concept is the formula Θ1[∀π□[x] . π 7→ κ1]. This introduces two short-

hands: first, π□[x] means “a place π with root variable x in a context π□”, used to

decompose a place. In T-Let, the update to Θ1 happens for all places with a root

variable x. Second, Θ1[π 7→ κ1] means “set π to κ1 in Θ1”. So this rule specifies that

when checking e2, all places within x are initialized to the dependencies κ1 of e1.

Next, the assignment expression rule is defined as updating all the conflicts of a

place π:

T-Assign

Σ;∆; Γ;Θ ⊢ e : τ si • κ ⇒ Γ1; Θ1

Γ1(π) = τ sx (τ sx = τ sd ∨∆;Γ1 ⊢uniq π ⇒ { uniqπ})
∆; Γ1 ⊢ τ si ≲ τ sx ⇒ Γ′ Θ2 = Θ1[update-conflicts (Θ1, π, κ)]

Σ;∆; Γ;Θ ⊢ π := e : unit • ∅ ⇒ Γ′[π 7→ τ si] ▷ π; Θ2

If you conceptualize a type as a tree and a path as a node in that tree, then a

node’s conflicts are its ancestors and descendants (but not siblings). Semantically,

conflicts are the set of places whose value change if a given place is mutated. Recall
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from the previous example that t.1 conflicts with t and t.1, but not t.0. Formally, we

say two places are disjoint (#) or conflict (⊓) when:

x1.q1 # x2.q2
def
= x1 ̸= x2 ∨ ( (q1 is not a prefix of q2) ∧

(q2 is not a prefix of q1))

π1 ⊓ π2
def
= ¬(π1 # π2)

Then to update a place’s conflicts in Θ, we define the metafunction update-conflicts

to add κ to all conflicting places p′. (Note that this rule is actually defined over place

expressions p, which are explained in the next subsection.)

update-conflicts (Θ, p, κ)
def
=

∀p′ 7→ κp′ ∈ Θcfl . p′ 7→ κp′ ∪ κ

where Θcfl = {p′ 7→ κp′ ∈ Θ | p⊓ p′}

Finally, the rule for reading places is simply to look up the place’s dependencies

in Θ:

T-Move

∆;Γ ⊢uniq π ⇒ { uniqπ} Γ(π) = τ si noncopyableΣ τ si

Σ;∆; Γ;Θ ⊢ π : τ si • Θ(π) ⇒ Γ[π 7→ τ si
†
]; Θ
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5.1.2 References

Beyond concrete places in memory, Oxide also contains references that point to places.

As in Rust, these references have both a lifetime (called a “provenance”) and a mu-

tability qualifier (called an “ownership qualifier”). Their syntax is:

Concrete Provenance r Abstract Provenance ϱ

Place Expression p ::= x | ∗p | p.n

Provenance ρ ::= ϱ | r

Ownership Qual. ω ::= shrd | uniq

Sized Type τ si ::= . . . | &ρω τxi

Expression e ::= . . . | &r ω p | p := e | letprov⟨r⟩ e

Provenances are created via a letprov expression, and references are created via

a borrow expression &r ω p that has an initial concrete provenance r (abstract prove-

nances are just used for types of function parameters). References are used in con-

junction with place expressions p that are places whose paths contain dereferences.

For example, this program creates, reborrows, and mutates a reference:

letprov⟨r1, r2, r3, r4⟩

let x : (u32, u32) = (0, 0);

let y : &r2 uniq (u32, u32) = &r1 uniqx;

let z : &r4 uniq u32 = &r3 uniq (∗y).1;

∗z := 1ℓ

Consider the information flow induced by ∗z := 1ℓ. We need to compute all places

that z could point-to, in this case x.1, so ℓ can be added to the conflicts of x.1.

Essentially, we must perform a pointer analysis [121].

The key idea is that Oxide already does a pointer analysis! Performing one is an

essential task in ensuring ownership-safety. All we have to do is extract the relevant

information with Oxide’s existing judgments. This is represented by the information
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flow extension to the reference-mutation rule:

T-AssignDeref

Σ;∆; Γ;Θ ⊢ e : τ sin • κ ⇒ Γ1; Θ1 ∆;Γ1 ⊢uniq p : τ sio ∆;Γ1 ⊢uniq p ⇒ {l}
∆;Γ1 ⊢ τ sin ≲ τ sio ⇒ Γ′ Θ2 = Θ1[∀ ωp′ ∈ {l} . update-conflicts (Θ1, p

′, κ)]

Σ;∆; Γ;Θ ⊢ p := e : unit • ∅ ⇒ Γ′ ▷ p; Θ2

Here, the important concept is Oxide’s ownership safety judgment: ∆; Γ ⊢ω p ⇒
{l}, read as “in the contexts ∆ and Γ, p can be used ω-ly and points to a loan in

{l}.” A loan l ::= ωp is a place expression with an ownership-qualifier. In Oxide, this

judgment is used to ensure that a place is used safely at a given level of mutability.

For instance, in the example at the top of this column, if ∗z := 1 was replaced with

x.1 := 1, then this would violate ownership-safety because x is already borrowed by

y and z.

In the example as written, the ownership-safety judgment for ∗z would compute

the loan set:

{l} = { uniq(∗z), uniq(∗y).1, uniqx.1}

Note that x.1 is in the loan set of ∗z. That suggests the loan set can be used as

a pointer analysis. The complete details of computing the loan set can be found in

Weiss et al. [120, p. 12], but the summary for this example is:

1. Checking the borrow expression “&r1 uniqx” gets the loan set for x, which is just

{uniqx}, and so sets Γ(r1) = {uniqx}.

2. Checking the assignment “y = &r1 uniqx” requires that &r1 uniq (u32, u32) is a

subtype of &r2 uniq (u32, u32), which requires that r1 “outlives” r2, denoted r1 :>

r2.

3. The constraint r1 :> r2 adds Γ(r1) to Γ(r2), so Γ(r2) = {uniqx}.

4. Checking “&r3 uniq (∗y).1” gets the loan set for (∗y).1, which is:

{uniqp.1 | uniqp ∈ Γ(r2)} ∪ {uniq(∗y).1} = {uniqx.1, uniq(∗y).1}



CHAPTER 5. MODULAR INFORMATION FLOW 74

That is, the loans for r2 are looked up in Γ (to get {x}), and then the additional

projection .1 is added on-top of each loan (to get {x.1}).

5. Then Γ(r4) = Γ(r3) because r3 :> r4.

6. Finally, the loan set for ∗z is:

Γ(r4) ∪ {uniq(∗z)} = {uniqx.1, uniq(∗y).1, uniq(∗z)}

Applying this concept to the T-AssignDeref rule, we compute information flow

for reference-mutation as: when mutating p with loans {l}, add κe to all the conflicts

for every loan uniqp′ ∈ {l}.

5.1.3 Function Calls

Finally, we examine how to modularly compute information flow through function

calls, starting with syntax:

Type Var α Frame Var φ

Expression e ::= . . . | f⟨Φ, ρ, τ⟩(π)

Global Entry ε ::= fn f⟨φ, ϱ, α, ϱ1 : ϱ2⟩(x : τ sia ) → τ sir { e }

Global Env. Σ ::= • | Σ, ε

Oxide functions are parameterized by frame variables φ (for closures), abstract

provenances ϱ (for provenance polymorphism), and type variables α (for type poly-

morphism). Unlike Oxide, we restrict to functions with one argument for simplicity

in the formalism. Calling a function f requires an argument π and any type-level

parameters Φ, ρ and τ .

The key question is: without inspecting its definition, what is the most precise

assumption we can make about a function’s information flow while still being sound?

By “precise” we mean “if the analysis says there is a flow, then the flow actually

exists”, and by “sound” we mean “if a flow actually exists, then the analysis says



CHAPTER 5. MODULAR INFORMATION FLOW 75

that flow exists.” For example consider this program:

fn f⟨ϱ1, ϱ2⟩(x : (&ϱ1 uniq u32,&ϱ2 shrd u32)){ ??? }

let x : u32 = 1ℓ1 ; let y : u32 = 2ℓ2 ;

letprov⟨r1, r2⟩ let t : (&r1 uniq u32,&r2 shrd u32)

= (&r1 uniqx,&r2 shrd y);

f⟨r1, r2⟩(t)

First, what can f(t) mutate? Any data behind a shared reference is immutable,

so only ∗t.0 could possibly be mutated, not ∗t.1. More generally, the argument’s

transitive mutable references must be assumed to be mutated.

Second, what are the inputs to the mutation of ∗t.0? This could theoretically

be any possible value in the input, so both ∗t.0 and ∗t.1. More generally, every

transitively readable place from the argument must be assumed to be to be an input

to the mutation. So in this example, a modular analysis of the information flow from

calling cp would add {ℓ1, ℓ2} to Θ(x) but not Θ(y).

To formalize these concepts, we first need to describe the transitive references of a

place. The ω-refs(p, τ) metafunction computes a place expression for every reference

accessible from p. If ω = uniq then this just includes unique references, otherwise it

includes unique and shared ones.

ω-refs(p, τb) = ∅

ω-refs(p, (τ si1 , . . . , τ
si
n )) =

⋃
i ω-refs(p.i, τ

si
i )

ω-refs(p,&ρω′ τxi) =

{∗p} ∪ ω-refs(∗p, τxi) if ω ≲ ω′

∅ otherwise

Here, ω ≲ ω′ means “a loan at ω can be used as a loan at ω′”, defined as uniq ̸≲ shrd

and ω ≲ ω′ otherwise. Then ω-loans(p, τ,∆,Γ) can be defined as the set of concrete
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places accessible from those transitive references:

ω-loans(p, τ,∆,Γ)
def
=⋃

p1∈ω-refs(p,τ)

{p2 | ωp2 ∈ {l}} where ∆; Γ ⊢ω p1 ⇒ {l}

Finally, the function application rule can be revised to include information flow

as follows:

T-App

Σ;∆; Γ ⊢ Φ ∆;Γ ⊢ ρ Σ;∆; Γ ⊢ τ si

Σ(f) = fn f⟨φ, ϱ, α, ϱ1 : ϱ2⟩(x : τ sia ) → τ sir { e }
Σ;∆; Γ;Θ ⊢ π : τ sia [Φ/φ][ρ/ϱ][τ

si/α] • κ ⇒ Γ1; Θ

∆; Γ1 ⊢ ϱ2[ρ/ϱ] :> ϱ1[ρ/ϱ] ⇒ Γ2 κarg = κ ∪
⋃

p∈shrd-loans(π,τ sia ,∆,Γ2)
Θ(p)

Θ′ = Θ[∀p ∈ uniq-loans(π, τ sia ,∆,Γ2) .

update-conflicts (Θ, p, κarg)]

Σ;∆; Γ;Θ ⊢ f⟨Φ, ρ, τ si⟩(π) : τ sir [Φ/φ][ρ/ϱ][τ
si/α] • κarg ⇒ Γ2; Θ

′

The collective dependencies of the input π are collected into κarg, and then every

unique reference is updated with κarg. Additionally, the function’s return value is

assumed to be influenced by any input, and so has dependencies κarg.

Note that this rule does not depend on the body e of the function f , only its type

signature in Σ. This is the key to the modular approximation. Additionally, it means

that this analysis can trivially handle higher-order functions. If f were a parameter

to the function being analyzed, then no control-flow analysis is needed to guess its

definition.

5.1.4 Additional rules

In Figure 5.1, we provide the remaining information flow rules for the expression forms

not covered in the sections above. T-Tuple, T-Seq, T-LetProv are relatively
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T-Tuple
∀i . Σ;∆; Γi−1; Θi−1 ⊢ êi : τ

si
i • κi ⇒ Γi; Θi

κ = {ℓ} ∪
⋃

i κi

Σ;∆; Γ0; Θ0 ⊢ (ê1, . . . , ên)ℓ : (τ
si
1 , . . . , τ

si
n ) • κ ⇒ Γn; Θn

T-Seq

Σ;∆; Γ;Θ ⊢ e1 : τ
si
1 • ⇒ Γ1; Θ1

Σ;∆; gc-loans(Γ1); Θ1 ⊢ e2 : τ
si
2 • κ2 ⇒ Γ2; Θ2

Σ;∆; Γ;Θ ⊢ e1; e2 : τ
si
2 • κ2 ⇒ Γ;Θ2

T-LetProv
Σ;∆; Γ, r 7→ ∅; Θ ⊢ e : τ si • κ ⇒ Γ′, r 7→ {l}; Θ′

Σ;∆; Γ;Θ ⊢ letprov⟨r⟩ e : τ si • κ ⇒ Γ′; Θ′

T-Borrow
Γ(r) = ∅ ∆;Γ ⊢ω p ⇒ {l}

∆;Γ ⊢ω p : τxi κ = {ℓ} ∪
⋃

ωp′∈{l}Θ(p′)

Σ;∆; Γ;Θ ⊢ (&r ω p)ℓ : &r ω τxi • κ ⇒ Γ[r 7→ {l}]; Θ

T-Copy
∆;Γ ⊢shrd p ⇒ {l} ∆;Γ ⊢shrd p : τ si

copyableΣτ
si κ =

⋃
ωp′∈{l}Θ(p′)

Σ;∆; Γ;Θ ⊢ p : τ si • κ ⇒ Γ;Θ

T-Branch
Σ;∆; Γ;Θ ⊢ e1 : bool • κ1 ⇒ Γ1; Θ1 Σ;∆; Γ1; Θ1 ⊢ e2 : τ

si
2 • κ2 ⇒ Γ2; Θ2

Σ;∆; Γ1; Θ1 ⊢ e3 : τ
si
3 • κ3 ⇒ Γ3; Θ3 τ si = τ si2 ∨ τ si = τ si3

∆;Γ2 ⊢ τ si2 ≲ τ si ⇒ Γ′
2 ∆;Γ3 ⊢ τ si3 ≲ τ si ⇒ Γ′

3

Γ′
2 ⋓ Γ′

3 = Γ′ Θ2 ⋓Θ3 = Θ′ Θ′′ = Θ′[∀p ∈ Θ′ \Θ1 . p 7→ Θ′(p) ∪ κ1]

Σ;∆; Γ;Θ ⊢ if e1 { e2 } else { e3 } : τ si • κ1 ∪ κ2 ∪ κ3 ⇒ Γ′; Θ′′

Figure 5.1: Additional information flow inference rules.
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straightforward, so we focus on the remaining three rules.

First, T-Borrow: a borrow is unique in that its runtime value is a place, i.e.

ptr π. A borrow &π will always have value ptr π, so it has no dependencies. But the

borrow is a reborrow, i.e. of the form &∗p, then we need to include the dependencies

of all places that p could point-to. Therefore we include Θ(p′) for each loan p′ in the

loan set of p.

Next, T-Copy shows a read from an arbitrary place expression p. Unlike T-

Move, we have to account for p referring to many possible memory locations. Again

this is captured by the ownership-safety judgment ⊢shrd p ⇒ {l}. Therefore the

dependencies of p are the dependencies of any possibly read place, i.e.
⋃

π′ Θ(π′).

Finally, T-Branch shows how to handle conditional execution. The κ is simple,

as the value of an if-expression could depend on either branch, κ2 ∪ κ3, along with

the condition, κ1. The more complex aspect is handling effects in Θ. The core idea

is that if a place p could be mutated in either e2 or e3, then that place has a control

dependency on e1, and κ1 should be part of the dependencies of p.

To encode this idea, we introduce two new metafunctions. First, Θ1⋓Θ3 represents

the union distributed over like entries:

Θ2 ⋓Θ3
def
= {p 7→ Θ2(p) ∪Θ3(p) | p ∈ Θ2 ∨ p ∈ Θ3}

Next, we represent “could be mutated in e2 or e3” via Θ′ \ Θ1, similarly distributed

over like entries:

Θ′ \Θ1
def
= {p 7→ Θ′(p) \Θ1(p)

| (p ∈ Θ′ ∨ p ∈ Θ1) ∧Θ′(p) \Θ1(p) ̸= ∅}

Then the rule says: after independently computing the contexts Θ2 and Θ3, compute

a unioned context Θ′. Then for all places p that had new dependencies generated in

e2 or e3, i.e. p ∈ Θ′ \Θ1, add κ1 to the dependencies of p.
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5.2 Soundness

To characterize the correctness of our analysis, we seek to prove its soundness : if a

true information flow exists in a program, then the analysis computes that flow. The

standard soundness theorem for information flow systems is noninterference [122]. At

a high level, noninterference states that for a given program and its dependencies, and

for any two execution contexts, if the dependencies are equal between contexts, then

the program will execute with the same observable behavior in both cases. For our

analysis, we focus just on values produced by the program, instead of other behaviors

like termination or timing.

To formally define noninterference within Oxide, we first need to explore Oxide’s

operational semantics. Oxide programs are executed in the context of a stack of

frames that map variables to values:

Stack σ ::= • | σ ♮ ς

Stack Frame ς ::= • | ς, x 7→ v

For example, in the empty stack •, the expression “let x : u32 = 1; x := 2”

would first add x 7→ 1 to the stack. Then executing x := 2 would update σ(x) = 2.

More generally, we use the shorthand σ(p) to mean “reduce p to a concrete location

π, then look up the value of π in σ.”

The key ingredient for noninterference is the equivalence of dependencies between

stacks. That is, for two stacks σ1 and σ2 and a set of dependencies κ in a context Θ,

we say those stacks are the same up to κ if all p with Θ(p) ⊆ κ are the same between

stacks. Formally, the dependencies of κ and equivalence of heaps are defined as:

deps(Θ, κ)
def
= {p | p 7→ κp ∈ Θ ∧ κp ⊆ κ}

σ1∼P σ2
def
= ∀p ∈ P . σ1(p) = σ2(p)

σ1∼Θ
κ σ2

def
= σ1∼deps(Θ,κ) σ2

Then we define noninterference as follows:
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Theorem 5.2.1 (Noninterference). Let e such that:

Σ; •; Γ;Θ ⊢ e : τ • κ ⇒ Γ′; Θ′

For i ∈ {1, 2}, let σi such that:

Σ ⊢ σi : Γ and Σ ⊢ (σi; e)
∗−→ (σ′

i; vi)

Then:

(a) σ1∼Θ
κ σ2 =⇒ v1 = v2

(b) ∀p 7→ κp ∈ Θ′ . σ1∼Θ
κp
σ2 =⇒ σ′

1(p) = σ′
2(p)

This theorem states that given a well-typed expression e and corresponding stacks

σi, then its output vi should be equal if the expression’s dependencies κ are initially

equal. Moreover, for any place expression p, if its dependencies in the output context

Θ′ are initially equal then the stack value will be the same after execution.

Note that the context ∆ is required to be empty because an expression e can only

evaluate if it does not contain abstract type or provenance variables. The judgment

Σ ⊢ σi : Γ means “the stack σi is well-typed under Σ and Γ”. That is, for all places

π in Γ, then π ∈ σ and σ(π) has type Γ(π).

5.2.1 Proofs

The proof of non-interference relies on a few key lemmas about the semantics of Oxide.

We start by defining and proving these lemmas (Section 5.2.1), and then proceed to

prove noninterference (Section 5.2.1).

Lemmas

Lemma 1 (Mutating a place also mutates its conflicts). Let:

• πmut = π□
mut[x], σ where σ ⊢ π□

mut × x ⇓ V

• v be a value and σ′ = σ[x 7→ V [v]]
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• πany ∈ σ

Then σ(πany) ̸= σ′(πany) =⇒ πmut ⊓ πany.

Proof.

1. Assume σ(πany) ̸= σ′(πany). Want to show πmut ⊓πany.

2. Because only x is assigned, then πany = π□
any[x].

3. Assume for sake of contradiction that πmut # πany. Let q be the shared path and

nmut, nany be the split, i.e. πmut = x.q.nmut.qmut and πany = x.q.nany.qany.

4. By ER-Projection, then

σ ⊢ x.q.nmut ⇓ V [(v0, . . . , vnany , . . . ,□nmut , . . . , vn)]

5. vnany = σ(x.q.nany) by induction on the derivation of V .

6. Therefore σ′(x.q.nmut) = vnany = σ(x.q.nmut).

7. This is a contradiction with σ(πany) ̸= σ′(πany), therefore πmut ⊓πany.

Lemma 2 (A place expression’s loan set contains the place it points-to at runtime.).

Let:

• σ,Σ,Γ where Σ ⊢ σ : Γ

• pmut where •; Γ ⊢uniq pmut ⇒ {l} and σ ⊢ pmut ⇓ πmut

• pany where σ ⊢ pany ⇓ πany

Then πany ⊓ πmut =⇒ ∃ uniqploan ∈ {l} . pany ⊓ ploan

Proof. Proof by induction on the derivation of

•; Γ ⊢uniq pmut ⇒ {l}

(a) O-SafePlace:
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1. If pany ̸= πany then ∃r . πany ∈ Γ(r). But the first premise of O-SafePlace, it

must be the case that πany # πmut, a contradiction. Therefore pany = πany.

2. Then by the conclusion of O-SafePlace,

{l} = { uniqπmut }. Then the theorem holds for ploan = πmut.

(b) O-Deref:

1. Let pmut = p□mut[∗πptr] and Γ(πptr) = &r uniq τ .

2. By extension of Lemma E.6 [2019, p. 47],

∃ uniqpi ∈ Γ(r) . σ ⊢ p□mut[pi] ⇓ πmut

3. By the inductive hypothesis on

•; Γ ⊢uniq p
□
mut[pi] ⇒ {uniqp′i}

then:

∃ uniqploan ∈ {uniqp′i} . pany ⊓ ploan

4. Because {uniqp′i} ⊆ {l}, then the theorem holds.

(c) O-DerefAbs: does not apply since ∆ = •.

Lemma 3 (A function only mutates unique references in its argument). Let:

• Γ, πarg, σ where Γ(πarg) = τ si and Σ ⊢ σ : Γ

• f where Σ ⊢ (σ; f(πarg))
∗−→ (σ′; )

• σ′′ = σ′[∀ploan ∈ uniq-loans(πarg, τ
si, •,Γ) . ploan 7→ σ(ploan)]

Then σ = σ′′.

Proof.
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1. Let:

Σ(f) = fn f⟨φ, ϱ, α, ϱ1 : ϱ2⟩(x : τ sia ) → τ sir { e }

2. By E-App, E-EvalCtx, and E-Framed:

Σ ⊢(σ; f(π)) → (σ ♮ x 7→ σ(π); framed e)
∗−→

(σ′ ♮ ς; framed v) → (σ′; v)

3. By inspection of the operational semantics, the only rule that could modify σ (as

apart from ς) is E-Assign. Assume that pmut := e′ is executed under stack σmut ♮ ς

during f(πarg) where σmut ⊢ pmut ⇓ πmut.

4. By inspection of the operational semantics, the only way to create a pointer is

E-Borrow on a place p. The only places in σmut that are accessible from e are

shrd-loans(πarg, τ
si, •,Γ), so it must be that pmut = p□[ploan] and ploan ∈ shrd-loans(πarg, τ

si, •,Γ).

5. Because e is well-typed under x : τ sia , then any shared references in x cannot be

mutated: T-AssignDeref requires ⊢uniq pmut ⇒ {l}, which by O-Deref requires

that the reference under pmut has type &r uniq τ . Therefore ploan ∈ uniq-loans(πarg, τ
si, •,Γ).

6. Hence, all mutated places in σ′ are projections of a ploan. Therefore σ′[∀ploan ∈
uniq-loans(πarg, τ

si, •,Γ) . ploan 7→ σ(ploan)] reverts all possible mutations, and

σ = σ′′.

Lemma 4 (A function’s effects are only influenced by its argument.). Let:

• Γ, π, σi where Γ(πarg) = τ si and i ∈ {1, 2} and Σ ⊢ σi : Γ

• f where Σ ⊢ (σi; f(πarg))
∗−→ (σ′

i; vi)

• P = {πarg} ∪ shrd-loans(πarg, τ
si, •,Γ)

σ1∼P σ2 =⇒ σ′
1∼P σ′

2 ∧ v1 = v2

Proof.
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1. As with the proof for Lemma 3, have (σi, f(πarg))
∗−→ (σ′

i; vi).

2. By inspection of the operational semantics, the only rule that could read σ is

E-Copy via the premise (σread; pread) → (σread; v) where σread ⊢ pread ⇓ πread 7→ v.

3. As with the proof for Lemma 3, the only possible value of pread = p□[ploan] where

ploan ∈ shrd-loans(πarg, τ
si, •,Γ).

4. Because ploan ∈ P and σ1∼P σ2 then σ1(ploan) = σ2(ploan).

5. Similarly because πarg ∈ P then σ1(πarg) = σ2(πarg).

6. Therefore every readable input for f is equal, and for the same function body e,

the evaluation should result in the same effects on σ and same output v. Hence,

σ′
1∼P σ′

2 and v1 = v2.

Noninterference

Theorem 5.2.1 (Noninterference). Let e such that:

Σ; •; Γ;Θ ⊢ e : τ • κ ⇒ Γ′; Θ′

For i ∈ {1, 2}, let σi such that:

Σ ⊢ σi : Γ and Σ ⊢ (σi; e)
∗−→ (σ′

i; vi)

Then:

(a) σ1∼Θ
κ σ2 =⇒ v1 = v2

(b) ∀p 7→ κp ∈ Θ′ . σ1∼Θ
κp
σ2 =⇒ σ′

1(p) = σ′
2(p)

Proof. Proof by induction over the derivation of e : τ .

• T-u32: e = nℓ where κ = {ℓ}. (a) is trivial because n always evaluates to n, and

(b) is trivial because n has no effects.
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• T-Move: e = π where κ = Θ(π). (b) is trivial because π has no effects, so we

focus on (a): σ1∼Θ
Θ(π) σ2 =⇒ v1 = v2

1. By the definition of equivalence of stacks, Θ(π) ⊆ Θ(π) =⇒ σ1(π) = σ2(π).

2. By E-Move, vi = σi(π).

3. Therefore v1 = v2.

• T-Copy: the proof is the same as for T-Move.

• T-Seq: e = e1; e2 where κ = κ2.

(a) σ1∼Θ
κ2
σ2 =⇒ v1 = v2

1. By E-EvalCtx, Σ ⊢ (σi; e1)
∗−→ (σe1

i ; ve1i ).

2. By E-Seq, Σ ⊢ (σe1
i ; (ve1i ; e2)) → (σe1

i ; e2)
∗−→ (σe2

i ; ve2i ). WTS ve21 = ve22 .

3. By the IH for e2, v
e2
1 = ve22 if σe1

1 ∼Θ1
κ2

σe1
2 .

4. Let π 7→ κπ ∈ Θ1. WTS κπ ⊆ κ2 =⇒ σe1
1 (π) = σe1

2 (π).

5. By the IH for e1, σ
e1
1 (π) = σe1

2 (π) if σ1∼Θ
κπ

σ2.

6. Let π′ 7→ κπ′ ∈ Θ1 such that κπ′ ⊆ κπ. WTS σ1(π
′) = σ2(π

′).

7. By assumption, because κπ ⊆ κ2 ∧ κπ′ ⊆ κπ, then κπ′ ⊆ κ2.

8. By assumption, σ1(π
′) = σ2(π

′).

(b) ∀π 7→ κπ ∈ Θ2 . σ1∼Θ
κπ

σ2 =⇒ σ′
1(π) = σ′

2(π)

1. By the IH for e2, σ
′
1(π) = σ′

2(π) if σ
e1
1 ∼Θ1

κπ
σe1
2 .

2. The proof that σe1
1 ∼Θ1

κπ
σe1
2 follows similarly as above.

• T-Let: e = “let x : τ sia = e1; e2”. The proof of (b) follows from the proof for

T-Seq. We focus on (a): σ1∼Θ
κ2
σ2 =⇒ v1 = v2

1. By E-EvalCtx, E-Let, E-EvalCtx, E-Shift:

Σ ⊢ (σi; let x : τ sia = e1; e2)
∗−→ (σe1

i ; let x : τ sia = vie1 ; e2) → (σe1
i , x 7→ vie1 ; shift e2)

∗−→

(σ′
i, x 7→ ; shift ve2i ) → (σ′

i; ve2i ).
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2. Let σx
i = σe1

i , x 7→ ve1i . By IH (a) for e2, if σ
x
1 ∼

Θ′
1

κ2 σx
2 then ve21 = ve22 .

3. Let π such that Θ′
1(π) ⊆ κ2. WTS σx

1 (π) = σx
2 (π).

4. If Θ′
1(π) ⊆ Θ(π), then σx

1 (π) = σx
2 (π) is true by assumption.

5. Otherwise must be π = π□[x] and κq ⊆ Θ′
1(π).

6. By IH (a) for e1, if σ1∼Θ
κ1
σ2 then ve11 = ve12 .

7. Because σ1∼Θ
κ2
σ2 and κ1 ⊆ κ2 by (3), then σ1∼Θ

κ1
σ2 and ve11 = ve12 .

8. Therefore σx
1 (π) = σx

2 (π).

• T-Assign: e = “πmut := e”. Because vi = () then (a) is trivial, so we focus on (b):

∀πany 7→ κany ∈ Θ′
1 . σ1∼Θ

κany
σ2 =⇒ σ′

1(πany) = σ′
2(πany)

1. By E-EvalCtx, Σ ⊢ (σi; e)
∗−→ (σe

i ; v
e
i ). By IH (b) on e, then σe

1(πany) =

σe
2(πany).

2. By E-Assign, Σ ⊢ (σe
i ; πmut := vei )

→ (σe
i [x 7→ Vi[v

e
i ]]; ()) where πmut = π□

mut[x] and σe
i ⊢ πmut ⇓ Vi.

3. By Lemma 1, if σe
i (πany) ̸= σ′

i(πany) then πany ⊓ πmut.

4. By T-Assign, because πany ⊓πmut then

Θ′
1(πany) = Θ1(πany) ∪ κe.

5. Because κe ⊆ Θ′
1(πany), then σ1∼Θ

κe
σ2.

6. By IH (a) on e, then ve1 = ve2.

7. Therefore σ′
1(πany) = σ′

2(πany).

• T-AssignDeref: e = “pmut := e”. Like T-Assign, we focus on (b): ∀πany 7→
κany ∈ Θ′

1 . σ1∼Θ
κany

σ2 =⇒ σ′
1(πany) = σ′

2(πany)

1. By E-EvalCtx and E-Assign,

Σ ⊢ (σi; pmut := e)
∗−→ (σe

i [xi 7→ Vi[v
e
i ]]; ())

where σe
i ⊢ pmut ⇓ Vi × π□

mut,i[xi].

2. By IH (b) on e, σe
1(πany) = σe

2(πany).

3. By Lemma 1, only consider the case where πmut,i ⊓ πany.
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4. By Lemma 2, because πmut,i ⊓πany then

∃ uniqploan ∈ {l} . πany ⊓ ploan.

5. By T-AssignDeref, then κ ⊆ Θ′
1(πany), and ve1 = ve2, and σ′

1(πany) = σ′
2(πany)

as in the proof for T-Assign.

• T-App: e = “f(πarg)” where κ = κarg.

(a) σ1∼Θ
κarg

σ2 =⇒ v1 = v2

1. Let p ∈ {πarg} ∪ shrd-loans(πarg, τ
si
a , •,Γ2).

By Lemma 4, if σ1(p) = σ2(p), then v1 = v2.

2. By T-App, Θ(p) ⊆ κarg. Therefore σ1(p) = σ2(p) and hence v1 = v2.

(b) ∀πany 7→ κany ∈ Θ2 . σ1∼Θ
κany

σ2 =⇒ σ′
1(πany) = σ′

2(πany)

1. By Lemma 3 and Lemma 1, if σi(πany) ̸= σ′
i(πany) then:

∃ploan ∈ uniq-loans(πarg, τ
si, •,Γ2) . (σi ⊢ ploan ⇓ πloan,i) ∧ πany ⊓ πloan,i.

2. By T-App, then κarg ⊆ κany.

3. By Lemma 4, then σ′
1(πany) = σ′

2(πany).

5.3 Implementation

Our formal model provides a sound theoretical basis for analyzing information flow in

Oxide. However, Rust is a more complex language than Oxide, and the Rust compiler

uses many intermediate representations beyond its surface syntax. Therefore in this

section, we describe the key details of how our system, Flowistry, bridges theory

to practice. Specifically:

1. Rust computes lifetime-related information on a control-flow graph (CFG) program

representation, not the high-level AST. So we translate our analysis to work for

CFGs (Section 5.3.1).

2. Rust does not compute the loan set for lifetimes directly like in Oxide. So we must

reconstruct the loan sets given the information exported by Rust (Section 5.3.2).
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1 fn get_count(
2 h: &mut HashMap<String, u32>,
3 k: String
4 ) -> u32 {
5 if !h.contains_key(&k) {
6 h.insert(k, 0); 0
7 } else {
8 *h.get(&k).unwrap()
9 }

10 }

start

true false

_9: Θ(_8) ∪ {b5[0]}

_8: Θ(_7) ∪ {b4[0]}

_7: Θ(_5) ∪ Θ(_6) ∪ {b3[2]}
_6: Θ(k) ∪ {b3[1]}
_5: Θ(*h) ∪ {b3[0]}

*h: Θ(*h) ∪ Θ(k) ∪ Θ(_4) ∪ {b1[1], b2[0]}

_4: Θ(_3) ∪ {b1[0]}

_3: Θ(_1) ∪ Θ(_2) ∪ {b0[3]}
_2: Θ(k) ∪ {b0[1]}
_1: Θ(*h) ∪ {b0[0]} _1 = &’1 (*h)

_2 = &’2 k
_3 = contains_key(_1, _2)

 b0

_4 = not _3
switch _4

b1

insert(h, k, 0)
b2

_5 = &’3 (*h)
_6 = &’4 k
_7 = get(_5, _6)

b3

_8 = unwrap(_7)
b4

_9 = (*_8)
return _9

b5

return 0
b6

Figure 5.2: Example of how Flowistry computes information flow. On the top is a
Rust function get_count that finds a value in a hash map for a given key, and inserts
0 if none exists. On the bottom get_count is lowered into Rust’s MIR control-flow
graph, annotated with information flow. Each rectangle is a basic block, named at
the top. Arrows indicate control flow (panics omitted).
Beside each instruction is the result of the information flow analysis, which maps
place expressions to locations in the CFG (akin to Θ in Section 5.1). For example,
the insert function call adds dependencies to *h because it is assumed to be mutated,
since it is a mutable reference. Additionally, the switch instructions and _4 variable
are added as dependencies to h because the call to insert is control-dependent on
the switch.
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3. Rust contains escape hatches for ownership-unsafe code that cannot be analyzed

using our analysis. So we describe the situations in which our analysis is unsound

for Rust programs (Section 5.3.3).

5.3.1 Analyzing Control-Flow Graphs

The Rust compiler lowers programs into a “mid-level representation”, or MIR, that

represents programs as a control-flow graph. Essentially, expressions are flattened

into sequences of instructions (basic blocks) which terminate in instructions that can

jump to other blocks, like a branch or function call. Figure 5.2 shows an example

CFG and its information flow.

To implement the modular information flow analysis for MIR, we reused standard

static analysis techniques for CFGs, i.e., a flow-sensitive, forward dataflow analysis

pass where:

• At each instruction, we maintain a mapping from place expressions to a set of loca-

tions in the CFG on which the place is dependent, comparable to Θ in Section 5.1.

• A transfer function updates Θ for each instruction, e.g. p := e follows the same

rules as in T-AssignDeref by adding the dependencies of e to all conflicts of

aliases of p.

• The input Θin to a basic block is the join of each of the output Θout
i for each

incoming edge, i.e. Θin =
∨

i Θ
out
i . The join operation is key-wise set union, or

more precisely:

Θ1 ∨Θ2
def
= {x 7→ Θ1(x) ∪Θ2(x) | x ∈ Θ1 ∨ x ∈ Θ2}

• We iterate this analysis to a fixpoint, which we are guaranteed to reach because

⟨Θ,∨⟩ forms a join-semilattice.

To handle indirect information flows via control flow, such as the dependence of h

on contains_key in Figure 5.2, we compute the control-dependence between instruc-

tions. We define control-dependence following Ferrante et al. [123]: an instruction Y
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is control-dependent on X if there exists a directed path P from X to Y such that any

Z in P is post-dominated by Y , and X is not post-dominated by Y . An instruction X

is post-dominated by Y if Y is on every path from X to a return node. We compute

control-dependencies by generating the post-dominator tree and frontier of the CFG

using the algorithms of Cooper et al. [124] and Cytron et al. [125], respectively.

Besides a return, the only other control-flow path out of a function in Rust is a

panic. For example, each function call in Figure 5.2 actually has an implicit edge

to a panic node (not depicted). Unlike exceptions in other languages, panics are

designed to indicate unrecoverable failure. Therefore we exclude panics from our

control-dependence analysis.

5.3.2 Computing Loan Sets from Lifetimes

To verify ownership-safety (perform “borrow-checking”), the Rust compiler does not

explicitly build the loan sets of lifetimes (or provenances in Oxide terminology). The

borrow checking algorithm performs a sort of flow-sensitive dataflow analysis that

determines the range of code during which a lifetime is valid, and then checks for

conflicts e.g. in overlapping lifetimes (see the non-lexical lifetimes RFC [126]).

However, Rust’s borrow checker relies on the same fundamental language feature

as Oxide to verify ownership-safety: outlives-constraints. For a given Rust function,

Rust can output the set of outlives-constraints between all lifetimes in the func-

tion. These lifetimes are generated in the same manner as in Oxide, such as from

inferred subtyping requirements or user-provided outlives-constraints. Then given

these constraints, we compute loan sets via a process similar to the ownership-safety

judgment described in Section 5.1.2. In short, for all instances of borrow expressions

&r ω p in the MIR program, we initialize Γ(r) = {p}. Then we propagate loans via

Γ(r) =
⋃

r′:>r Γ(r
′) until Γ reaches a fixpoint.

5.3.3 Handling Ownership-Unsafe Code

Rust has a concept of raw pointers whose behavior is comparable to pointers in C.

For a type T, an immutable reference has type &T, while an immutable raw pointer
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has type *const T. Raw pointers are not subject to ownership restrictions, and they

can only be used in blocks of code demarcated as unsafe. They are primarily used

to interoperate with other languages like C, and to implement primitives that cannot

be proved as ownership-safe via Rust’s rules.

Our pointer and mutation analysis fundamentally relies on ownership-safety for

soundness. We do not try to analyze information flowing directly through unsafe

code, as it would be subject to the same difficulties of analyzing C++ described in

Section 4.3. While this limits the applicability of our analysis, empirical studies have

shown that most Rust code does not (directly) use unsafe blocks [127, 128].

5.4 Evaluation

Section 5.2 established that our analysis is sound. The next question is whether it

is precise: how many spurious flows are included by our analysis? We evaluate two

directions:

1. What if the analysis had more information? If we could analyze the definitions

of called functions, how much more precise are whole-program flows vs. modular

flows?

2. What if the analysis had less information? If Rust’s type system was more like

C++, i.e. lacking ownership, then how much less precise do the modular flows

become?

To answer these questions, we created three modifications to Flowistry:

• Whole-program: the analysis recursively analyzes information flow within the

definitions of called functions. For example, if calling a function f(&mut x, y) where

f does not actually modify x, then the Whole-program analysis will not register

a flow from y to x.

• Mut-blind: the analysis does not distinguish between mutable and immutable

references. For example, if calling a function f(&x), then the analysis assumes that

x can be modified.
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• Ref-blind: the analysis does not use lifetimes to reason about references, and

rather assumes all references of the same type can alias. For example, if a function

takes as input f(x: &mut i32, y: &mut i32) then x and y are assumed to be aliases.

The Whole-program modification represents the most precise information flow

analysis we can feasibly implement. The Mut-blind and Ref-blind modifications

represent an ablation of the precision provided by ownership types. Each modifica-

tion can be combined with the others, representing 23 = 8 possible conditions for

evaluation.

To better understand Whole-program, say we are analyzing the information

flow for an expression f(&mut x, y) where f is defined as f(a, b) { (*a).1 = b; }.

After analyzing the implementation of f, we translate flows to parameters of f into

flows on arguments of the call to f. So the flow b → (*a).1 is translated into y →

x.1. Additionally, if the definition of f is not available, then we fall back to the

modular analysis. Importantly, due to the architecture of the Rust compiler, the only

available definitions are those within the package being analyzed. Therefore even with

Whole-program, we cannot recurse into e.g. the standard library.

With these three modifications, we compare the number of flows computed from

a dataset of Rust projects (Section 5.4.1) to quantitatively (Section 5.4.2) and quali-

tatively (Section 5.4.3) evaluate the precision of our analysis.

5.4.1 Dataset

To empirically compare these modifications, we curated a dataset of Rust packages

(or “crates”) to analyze. We had two selection criteria:

1. To mitigate the single-crate limitation of Whole-program, we preferred large

crates so as to see a greater impact from the Whole-program modification.

We only considered crates with over 10,000 lines of code as measured by the cloc

utility [129].

2. To control for code styles specific to individual applications, we wanted crates from

a wide range of domains.
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Table 5.1: Dataset of crates used to evaluate information flow precision, ordered in
increasing number of variables analyzed. Each project often contains many crates,
so a sub-crate is specified where applicable, and the root crate is analyzed otherwise.
Metrics displayed are LOC (lines of code), number of variables, number of functions,
and the AIF (average [MIR] instructions per function).

Project Crate Purpose LOC # Vars # Funcs AIF

rayon Data parallelism library 15,524 10,607 1,079 16.6

Rocket core/lib Web backend framework 10,688 12,040 741 25.5

rustls rustls TLS implementation 16,866 23,407 868 42.4

sccache Distributed build cache 23,202 23,987 643 62.1

nalgebra Numerics library 31,951 35,886 1,785 26.7

image Image processing library 20,722 39,077 1,096 56.8

hyper HTTP server 15,082 44,900 790 82.9

rg3d 3D game engine 54,426 59,590 3,448 25.7

rav1e Video encoder 50,294 76,749 931 115.4

RustPython vm Python interpreter 47,927 97,637 3,315 51.0

Total: 286,682 435,979 14,696

After a manual review of large crates in the Rust ecosystem, we selected 10 crates,

shown in Table 5.1. We built each crate with as many feature flags enabled as would

work on our Ubuntu 16.04 machine. Details like the specific flags and commit hashes

can be found in the appendix.

For each crate, we ran the information flow analysis on every function in the crate,

repeated under each of the 8 conditions. Within a function, for each local variable x,

we compute the size of Θ(x) at the exit of the CFG — in terms of program slicing, we

compute the size of the variable’s backward slice at the function’s return instructions.

The resulting dataset then has four independent variables (crate, function, condition,

variable name) and one dependent variable (size of dependency set) for a total of

3,487,832 data points.

Our main goal in this evaluation is to analyze precision, not performance. Our

baseline implementation is reasonably optimized— the median per-function execution

time was 370.24µs. But Whole-program is designed to be as precise as possible,

so its naive recursion is sometimes extremely slow. For example, when analyzing

the GameEngine::render function of the rg3d crate (with thousands of functions

in its call graph), the modular analysis takes 0.13s while the recursive analysis takes

https://github.com/rayon-rs/rayon
https://github.com/SergioBenitez/Rocket
https://github.com/ctz/rustls
https://github.com/mozilla/sccache
https://github.com/dimforge/nalgebra
https://github.com/image-rs/image
https://github.com/hyperium/hyper
https://github.com/mrDIMAS/rg3d
https://github.com/xiph/rav1e
https://github.com/RustPython/RustPython
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Figure 5.3: Distribution in differences of dependency set size between Whole-
program and Modular analyses. The x-axis is a log-scale with 0 added for com-
parison. Most sets are the same, so 0 dominates (left). A log-scale (right) shows the
tail more clearly.

23.18s, a 178× slowdown. Future work could compare our modular analysis to whole-

program analyses across the precision/performance spectrum, such as in the extensive

literature on context-sensitivity [121].

5.4.2 Quantitative Results

We observed no meaningful patterns from the interaction of modifications — for ex-

ample, in a linear regression of the interaction of Mut-blind and Ref-blind against

the size of the dependency set, each condition is individually statistically significant

(p < 0.001) while their interaction is not (p = 0.337). So to simplify our presentation,

we focus only on four conditions: three for each modification individually active with

the rest disabled, and one for all modifications disabled, referred to as Modular.

Whole-program

For Whole-program, we compare against Modular to answer our first evaluation

question: how much more precise is a whole-program analysis than a modular one? To

quantify precision, we compare the percentage increase in size of dependency sets for a

given variable between two conditions. For instance, if Whole-program computes
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Figure 5.4: Distribution in differences between Modular and each alternative condi-
tion, with zeros excluded to highlight the shape of each distribution. Mut-blind and
Ref-blind both reduce the precision more often and more severely than Modular
does vs. Whole-program.

|Θ(x)| = 2 and Modular computes |Θ(x)| = 5 for some x, then the difference is

(5− 2)/2 = 1.5 = 150%.

Figure 5.3 shows a histogram of the differences between Whole-program and

Modular for all variables. In 94% of all cases, the Whole-program and Mod-

ular conditions produce the same result and hence have a difference of 0. In the

remaining 6% of cases with a non-zero difference, visually enhanced with a log-scale

in Figure 5.3-right, the metric follows a right-tailed log-normal distribution. We can

summarize the log-normal by computing its median, which is 7%. This means that

within the 6% of non-zero cases, the median difference is an increase in size by 7%.

Thus, the modular approximation does not significantly increase the size of depen-

dency sets in the vast majority of cases.

Mut-blind and Ref-blind

Next, we address our second evaluation question: how much less precise is an analysis

with weaker assumptions about the program than the Modular analysis? For this

question, we compare the size of dependency sets between the Mut-blind and Ref-

blind conditions versus Modular. Figure 5.4 shows the corresponding histograms
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of differences, with the Whole-program vs. Modular histogram included for

comparison.

First, the Mut-blind and Ref-blind modifications reduce the precision of the

analysis more often and with a greater magnitude than Modular does vs. Whole-

program. 39% of Mut-blind cases and 17% of Ref-blind cases have a non-zero

difference. Of those cases, the median difference in size is 50% for Mut-blind and

56% for Ref-blind.

Therefore, the information from ownership types is valuable in increasing the

precision of our information flow analysis. Dependency sets are often larger without

access to information about mutability or lifetimes.

5.4.3 Qualitative Results

The statistics convey a sense of how often each condition influences precision. But it

is equally valuable to understand the kind of code that leads to such differences. For

each condition, we manually inspected a sample of cases with non-zero differences vs.

Modular.

Modularity.

One common source of imprecision in modular flows is when functions take a mutable

reference as input for the purposes of passing the mutable permission off to an element

of the input.

1 fn crop<I: GenericImageView>(

2 image: &mut I, x: u32, y: u32,

3 width: u32, height: u32

4 ) -> SubImage<&mut I> {

5 let (x, y, width, height) =

6 crop_dimms(image, x, y, width, height);

7 SubImage::new(image, x, y, width, height)

8 }

For example, the function crop from the image crate returns a mutable view on an

image. No data is mutated, only the mutable permission is passed from whole image
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to sub-image. However, a modular analysis on the image input would assume that

image is mutated by crop.

Another common case is when a value only depends on a subset of a function’s

inputs. The modular approximation assumes all inputs are relevant to all possible

mutations, but this is naturally not always the case.

1 fn solve_lower_triangular_with_diag_mut<R2,C2,S2>(

2 &self, b: &mut Matrix<N, R2, C2, S2>, diag: N,

3 ) -> bool {

4 if diag.is_zero() { return false; }

5 // logic mutating b...

6 true

7 }

For example, this function from nalgebra returns a boolean whose value solely

depends on the argument diag. However, a modular analysis of a call to this function

would assume that self and b is relevant to the return value as well.

Mutability

The reason Mut-blind is less precise than Modular is quite simple — many func-

tions take immutable references as inputs, and so many more mutations have to be

assumed.

1 fn read_until<R, F>(io: &mut R, func: F)

2 -> io::Result<Vec<u8>>

3 where R: Read, F: Fn(&[u8]) -> bool

4 {

5 let mut buf = vec![0; 8192]; let mut pos = 0;

6 loop {

7 let n = io.read(&mut buf[pos..])?; pos += n;

8 if func(&buf[..pos]) { break; }

9 // ...

10 }

11 }

For instance, this function from hyper repeatedly calls an input function func
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with segments of an input buffer. Without a control-flow analysis, it is impossible

to know what functions read_until will be called with. And so Mut-blind must

always assume that func could mutate buf. However, Modular can rely on the

immutability of shared references and deduce that func could not mutate buf.

Lifetimes

Without lifetimes, our analysis has to make more conservative assumptions about

objects that could possibly alias. We observed many cases in theRef-blind condition

where two references shared different lifetimes but the same type, and so had to be

classified as aliases.

1 fn link_child_with_parent_component(

2 parent: &mut FbxComponent,

3 child: &mut FbxComponent,

4 child_handle: Handle<FbxComponent>,

5 ) { match parent {

6 FbxComponent::Model(model) => {

7 model.geoms.push(child_handle),

8 },

9 // ..

10 }}

For example, the link_child_with_parent_component function in rg3d takes mu-

table references to a parent and child. These references are guaranteed not to alias

by the rules of ownership, but a naive pointer analysis must assume they could, so

modifying parent could modify child.

5.4.4 Threats to Validity

Finally, we address the issue: how meaningful are the results above? How likely would

they generalize to arbitrary code rather than just our selected dataset? We discuss a

few threats to validity below.
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Figure 5.5: Distribution of non-zero differences between Modular and Mut-blind,
broken down by crate.

Are the results due to only a few crates? If differences between techniques

only arose in a small number of situations that happen to be in our dataset, then our

technique would not be as generally applicable. To determine the variation between

crates, we generated a histogram of non-zero differences for the Modular vs. Mut-

blind comparison, broken down by crate in Figure 5.5.

As expected, the larger code bases (e.g. rav1e and RustPython) have more non-

zero differences than smaller codebases — in general the correlation between non-zero

differences and total number of variables analyzed is strong, R2 = 0.79. However

variation also exists for crates with roughly the same number of variables like image

and hyper. Mut-blind reduces precision for variables in hyper more often than

image. A qualitative inspection of the respective codebases suggests this may be

because hyper simply makes greater use of immutable references in its API.

These findings suggest that the impact of ownership types and the modular ap-

proximation likely do vary with code style, but a broader trend is still observable

across all code.

Would Whole-program be more precise with access to dependencies? A

limitation of our whole-program analysis is our inability to access function definitions
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outside the current crate. Without this limitation, it may be that the Modular

analysis would be significantly worse than Whole-program. So for each variable

analyzed by Whole-program, we additionally computed whether the information

flow for that variable involved a function call across a crate boundary.

Overall 96% of cases reached at least one crate boundary, suggesting that this

limitation does occur quite often in practice. However, the impact of the limitation is

less clear. Of the 96% of cases that hit a crate boundary, 6.6% had a non-zero differ-

ence between Modular and Whole-program. Of the 4% that did not hit a crate

boundary, 0.6% had a non-zero difference. One would expect that Whole-program

would be the most precise when the whole program is available (no boundary), but

instead it was much closer to Modular.

Ultimately it is not clear how much more precise Whole-program would be

given access to all a crate’s dependencies, but it would not necessarily be a significant

improvement over the benchmark presented.

Is ownership actually important for precision? The finding that Ref-blind

only makes a difference in 17% of cases may seem surprisingly small. For instance,

Shapiro and Horwitz [130] found in a empirical study of slices on C programs that

“using a pointer analysis with an average points-to set size twice as large as a more

precise pointer analysis led to an increase of about 70% in the size of [slices].”

A limitation of our ablation is that the analyzed programs were written to satisfy

Rust’s ownership safety rules. Disabling lifetimes does not change the structure of the

programs to become more C-like — Rust generally encourages a code style with fewer

aliases to avoid dealing with lifetimes. A fairer comparison would be to implement

an application idiomatically in both Rust and Rust-but-without-feature-X, but such

an evaluation is not practical. It is therefore likely that our results understate the

true impact of ownership types on precision given this limitation.



Chapter 6

Evaluating the Utility of Slicing

When Debugging

After implementing Flowistry as described in Chapter 5, I returned to the original

goal of this line of work: evaluating how program slicing can be useful to programmers

in finding relevant code. The main design challenge was the user interface: how should

a programmer ask for a slice, and how should the slice be presented? These questions

need to be answered in terms of the context of use: how would a programmer use the

slice to accomplish a task?

The answer suggested by prior work is relevance. For example, as described by

Weiser and Lyle [12]:

One aid to understanding is to reduce the amount of detail a programmer

sees by extracting only relevant information. An application of data-flow

analysis, program slicing, can be used to transform a large program into a

smaller one containing only those statements relevant to the computation

of a given output.

Nearly every paper on program slicing since Weiser’s has used the term “relevance”

in the same way: a slice is the set of code “relevant” to a slicing criterion. Therefore

I set out to design a slicing UI, Focus Mode, that would help programmers find

code relevant to their task (Section 6.1), and to evaluate whether this design holds

101
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up in preliminary user testing (Section 6.2).

6.1 Design

As described in Section 1.2, the natural place for a programmer’s cognitive support

tool is the IDE. Therefore I designed the slicer UI, Focus Mode, as an extension

to the Visual Studio Code IDE. At a high level, a user can click on a variable, and

the extension will visualize the (modular) slice of that variable. In this section, I will

describe the details of computing and visualizing a slice.

6.1.1 Computing a Slice

The interface provided by Flowistry is essentially: given a Rust function f , then

for each location ℓ ∈ f , Flowistry produces a dependency context Θℓ. When the

user asks to compute a slice on a given variable x, Focus Mode finds the function

f containing x, finds the location ℓ of x, and the computes Θℓ.

Given Θℓ, computing the slice is relatively simple. The backward and forward

slices of a variable (or more generally a place expression p) are:

backwardΘ(p) = Θ(p)

forwardΘ(p) = {ℓ | ∃p′ ∈ inputs(eℓ) . Θ(p) ⊆ Θ(p′)}

A place’s backward slice is exactly its set of dependencies. A place’s forward slice is

the set of things that depend on it, i.e. an input p′ to the expression depends on p

which can be determined by Θ(p′) ⊆ Θ(p).

Notably this analysis produces the modular slice of the user’s selection. Focus

Mode only operates on a single function at a time, rather than performing a whole-

program analysis every time the user moves their cursor.
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1 fn average_and_median_of_evens(ns: impl Iterator<Item = usize>) -> (usize,
usize) {

2 println!("Starting computation!");
3 let start = Instant::now();
4 let mut v = ns.collect::<Vec<_>>();
5 v.sort();
6 let v2 = v.iter().copied().filter(|x| *x % 2 == 0).collect::<Vec<_>>();
7 assert!(v2.len() > 0);
8 let median = v2[v2.len() / 2];
9 let avg = v2.iter().copied().sum::<usize>() / v.len();

10 println!("Elapsed: {}", start.elapsed().as_secs_f64());
11 (avg, median)
12 }

Figure 6.1: A buggy Rust program that computes the average and median of the even
numbers in the input. The denominator on line 9 is supposed to be v2.len().

6.1.2 Visualizing a Slice

To effectively design an interface for program slices, we first need to understand

the relationship between slices and relevance: what makes information cognitively

relevant to a particular programming task? And how does a slice represent (or not)

such relevant information? For a programmer performing a particular task (e.g.

debugging, refactoring, etc.), we say information is relevant to the programmer if

mentally processing that information would influence the programmer’s approach to

the task, e.g. by helping them complete task more quickly.

While information flow is a precise theory of relevance as a formal construct, we

cannot provide as clean a theory of when information is cognitively relevant — that

determination is heavily contingent on both the task and the programmer. We can, at

least, make a few conjectures grounded in our current understanding of programmer

practice and cognitive psychology. As a running example, consider the buggy Rust

program in Figure 6.1. This function attempts to compute the average and median of

even numbers in a vector, except the average’s denominator incorrectly refers to the

wrong vector (v instead of v2). Suppose a programmer observes a failing unit tests

that shows an incorrect output for the average. Then what information is relevant to

fixing this bug?
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1. The code affecting the buggy value is relevant: the code which affects the

runtime value of avg (lines 4, 6, and 9) are relevant to an operational understanding

of how avg is produced. A programmer would likely mentally trace these lines to

simulate how the bug occurs [131].

2. Parallel code structures may be relevant: the median calculation on line 8

also involves dividing by a vector length, and a programmer may notice that line

8 uses v2.len() while line 9 uses v.len(), deducing the root cause. Programmers

frequently identify patterns (or schema) in code and use these patterns to make

such inferences [44].

3. Direct influence is more relevant than transitive influence: when trying

to understand what affects avg, a programmer is more likely to be first interested

in the direct influence on avg (e.g. the vector v2) than the transitive influence

(e.g. the input ns). Programmers have very limited working memory, and so must

judiciously decide which code to read and in what order to avoid overloading their

memory (Chapter 3).

4. The set of relevant code will rapidly shift: upon observing that v2 affects

avg, a programmer may ask “what is the role of v2 in the program?” The code

relevant to this question is entirely different, e.g. lines 7 and 8 indicate the role

of v2. Programmers often swap between bottom-up (“why is this here?”) and

top-down (“how does this work?”) forms of reasoning [132].

A key takeaway from these observations is that a program slice does clearly contain

relevant information (as per principle 1), but a slice misses important nuances of cog-

nitive relevance. Important information such as parallel code may be outside a slice.

Within a slice, not all information should be weighted equally. And a programmer

will likely want multiple slices to understand a given program.

Based on these principles, we designed Focus Mode, a novel interface for vi-

sualizing program slices that integrates into the Visual Studio Code IDE, shown in

Figure 6.2. To use the tool, a programmer enters Focus Mode with a keyboard

shortcut, and then places their cursor on the variable or expression they want to
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1 !e focus region is automatically updated when the user 
moves their cursor. !is ambient visualization helps the 
user focus on their task, and not on using the tool.

Code outside the focus region has lowered opacity to 
visually distinguish it without being eliminated entirely. 
!is avoids removing potentially relevant code.

!e direct in"uences on/from the selection are 
emphasized with a light grey background. !is 
guides the user to the immediately relevant code.

Both the forward and backward slice 
are shown simultaneously. !is allows 
the user to make both bo#om-up and 
top-down inferences about a selection.

Figure 6.2: A diagrammed screenshot of the Focus Mode interface in Visual Studio
Code, showing the focus regions after selecting the variable v2. Each point highlights
how a cognitive principle informed the UI design.

focus on. After selecting code with a corresponding place p at a location ℓ, Focus

Mode computes and visualizes the “focus region” of p as the union of its forward

and backward slices at the location ℓ, i.e. forwardΘℓ
(p) ∪ backwardΘℓ

(p). Figure 6.2

explains how the UI design of Focus Mode draws on the principles above.

In line with our goal to make a practical slicing tool, Focus Mode is a free and

open-source VSCode extension that is currently available to the public. As of August

2022, Focus Mode has been downloaded 1,800 times from the VSCode extension

marketplace. Focus Mode is available for download here: https://github.com/

willcrichton/flowistry

6.2 User study

With a slicing interface in hand, we next returned to the core question of this work:

do program slices (mediated through our interface) actually help programmers find

relevant code? To gather preliminary evidence about this question, we conducted a

study of N = 18 Rust developers using Focus Mode to debug small Rust programs.

Although we expect slices to be useful for other programming tasks, we specifically

https://github.com/willcrichton/flowistry
https://github.com/willcrichton/flowistry
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used a debugging task because it (a) requires programmers to read and understand

code, and (b) has been the primary application of slicing in the past. Our two main

research questions were:

1. Could developers successfully incorporate Focus Mode into their debugging pro-

cess?

2. For which scenarios can Focus Mode help programmers find relevant code?

6.2.1 Methodology

We designed three small Rust programs that contained a bug and a corresponding

broken unit test: Url, Median, and Command-line. See Figure 6.3 for a descrip-

tion and excerpt of each program. The programs were designed to exhibit a range

of domains, difficulties, and code styles so as to test Focus Mode in many set-

tings. Additionally, each program had more code than was relevant to the bug (as

would be true in any real-world setting) so Focus Mode would be potentially useful

for distinguishing relevant code. The full source of each program is available in the

supplementary materials.

The overall structure of the experiment was: first, participants were given a 5

minute tutorial on how to use Focus Mode, and then given 10 minutes to use Focus

Mode to debug a sample program. Then for each task, participants were instructed

to find and fix the bug in the given program. Participants had a maximum of 15

minutes per task. Participants used their own Rust development setup, except they

were required to use Visual Studio Code to integrate with Focus Mode. Participants

were allowed to use all normal debugging tools (printing, debuggers, Google, etc.) in

addition to Focus Mode. After the tasks were completed, we elicited feedback from

participants about their experience in a semi-structured interview.

Additionally, we wanted to compare the experiences of developers both using and

not using Focus Mode on each task, so as to better highlight where Focus Mode

may be useful. Therefore we had participants use Focus Mode for two of the tasks

(randomly selected), and not use Focus Mode for the remaining task. The order of
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1 let mut path = Vec::new();
2 loop {
3 let part = chars.take_while(|c| *c != '/').collect::<String>();
4 if part.len() > 0 { path.push(part); }
5 else { break; }
6 }
7 let query = match path.last() {
8 Some(part) if part.contains('?') => {
9 let page = path.pop().unwrap();
10 let (_, query) = page.split_once('?').unwrap();
11 Some(query.to_string())
12 }
13 _ => None,
14 };
15 Some(Url { scheme, hostname, tld, port, path, query })

(a) Url (61 LOC function, 129 LOC total): a string parsing program. Given a string representing a
URL, the program parses the string into its constituent components. Bug: the last path component
is removed for processing on line 9, but not pushed back after removing the query suffix.

1 for (continent, cont_countries) in continents.iter_mut() {
2 cont_countries.sort_by_key(|c| c.population);
3 let n = cont_countries.len();
4 let median_countries = if n % 2 == 1 {
5 vec![&cont_countries[(n - 1) / 2]]
6 } else {
7 vec![&cont_countries[n / 2 - 1], &cont_countries[n / 2]]
8 };
9 let names = median_countries
10 .iter().map(|c| c.name.to_string()).collect::<BTreeSet<_>>();
11 let pop_total = median_countries.iter().map(|c| c.population).sum::<usize>();
12 let median = pop_total / cont_countries.len();
13 medians.insert(continent.to_string(), (names, median));
14 }

(b) Median (36 LOC function, 108 LOC total): a tabular data analytics program. Given
a list of countries, the program computes the median population and names of countries at
the median, grouped by continent. Bug: the calculation of median on line 12 incorrectly uses
cont_countries.len() instead of median_countries.len().

1 let mut cli = self.clone();
2 let mut args = VecDeque::from(args);
3 let mut parsed = HashMap::new();
4 let build_error = |err: ErrorType| err.to_string(self);

(c) Command-line (several functions, 256 LOC total): a command-line interface (CLI) API. Allows
users to describe a CLI, parse a list of strings into arguments, and build a helpful error. Bug: the
build_error closure incorrectly captures the original self and not cli, which is mutated during
parsing to indicate which arguments have already been accepted.

Figure 6.3: Excerpts of the programs for each debugging task demonstrating the core
bug.
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tasks was also randomized for each participant to reduce the influence of cross-task

effects.

All 18 participants were recruited through social media, specifically the first au-

thor’s Twitter and the Rust community on Reddit (/r/rust). Participants were re-

quired to have at least one month of experience with Rust, and were compensated

$20 for their participation. Participants had a median 6.5 years of total programming

experience, and 15/18 reported using Rust either for their jobs or on a regular basis.

This study was approved by our university’s Institutional Review Board. To protect

the privacy of the participants, we cannot provide access to the collected data.

Our focus in this study was not to solely perform a quantitative analysis of time-

on-task. Such a study is better suited to confirmatory testing of well-worn tasks and

tools, as opposed to a user study of new tools. Moreover, our results are inherently

prone to high variance given a diverse yet small sample. Participants had between

1 and 40 years of total programming experience, and ranged from undergraduate

students to professional Rust developers to Rust compiler contributors to university

professors.

Therefore we used a constructivist grounded theory methodology [133], compara-

ble to the methodology used by Lubin and Chasins [134] in their study of functional

programmers. That is, to analyze the study data, we engaged in an iterative process

of annotating notable events (generating a hypothesis, remarking about an inference

generated by use of Focus Mode, etc.) in the debugging sessions and post-debugging

interviews, and used those annotations to find similar events in other participants’

data. Then we clustered the events into thematic groups that identified larger trends

in the study.

6.2.2 Task results

First, we will report on participants’ experiences within each debugging task. The

high-level takeaways are summarized in Table 6.1, and overall statistics are shown in

Figure 6.4.
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Task Helpful? Takeaways
Url Yes Focus Mode helped participants both eliminate irrele-

vant code and draw attention to relevant code they oth-
erwise might have missed.

Median No When code outside a slice is relevant, Focus Mode’s
visualization does not facilitate understanding that code.

Command-
line

Somewhat Participants did successfully use Focus Mode to ignore
irrelvant code, but still encountered issues comparable to
the Median task.

Table 6.1: Summary of takeaways from observing participants’ during each debugging
task.

Url task

The bug in this task is that when a URL contains a query string, the query-processing

code incorrectly pops the last string off the path without restoring it after processing

(lines 9-10 of Figure 6.3a). This task provided a clear situation where Focus Mode

helped programmers focus on relevant code. The time-on-task for participants us-

ing Focus Mode was statistically significantly lower (p = 0.029) when controlling

for participant experience. We controlled for experience by regressing time-on-task

against the interaction of whether the participant used Focus Mode and their re-

ported years of coding experience, and by analyzing the estimated regression coeffi-

cient of the “using-Focus Mode” term.

Here, Focus Mode provided two main functions: first, it helped de-emphasize

code for decoding other parts of the URL that was not relevant to the bug. Second, it

helped emphasize that code which affects path existed not just in the main loop that

defines the variable, but also in the query processing code. The two participants that

failed to solve the task without Focus Mode never read to the query processing

code, and therefore never found the bug. By contrast, participants with Focus

Mode frequently had experiences like this:

• P1 (while solving Url): “So let’s have a look at path. What influences our path?

Cause that’s the thing that we’ve got wrong. [clicks on path in the return value
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Figure 6.4: Statistics about each task, split by whether the participants were using
Focus Mode. Left: fraction of participants that completed a given task. Right:
distribution of time-on-task, showing both the individual datapoints and a boxplot
summary.

and scans the focus region] I’m a bit wary of these path.pop()s because we might

be popping things and then not saving them anywhere.”

• P11 (in interview): “The addon helped me determine that path was used in the

query portion more than I thought it was initially because I saw it here [points

to path.last()] and then the addon helped me notice it was here too [points to

path.pop()].”

To explore this phenomenon, we went through each participant’s Url session and

marked the first moment at which they explored the query processing code as a

possible bug location (c.f. some participants initially glanced at the code and assumed

nothing relevant was happening). From this data, we determined that participants

solving Url with Focus Mode on average identified this code as potentially buggy

3.5 minutes earlier than participants without Focus Mode. This result is also

statistically significant (p = 0.014) when controlling for programmer experience (using

the same methodology as for overall time-on-task).
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Median task

The bug in this task is that the denominator of a median calculation (line 12 of

Figure 6.3b) refers to the wrong vector. Focus Mode was not ultimately effective at

helping participants debug this issue. The difference in completion rates (Figure 6.4-

left) and time-on-task (Figure 6.4-right) was not statistically significant, nor did we

qualitatively observe participants gaining much insight from using Focus Mode.

The main insight we hypothesized that a participant may get from Focus Mode

is to observe that median_countries was not relevant to the denominator, especially

in contrast to pop_total to which it is relevant. However, in practice participants

either did not click on the denominator to see its influence, or if they did they observed

it for a moment and then moved on without realizing anything was amiss. In the

former case, participants using Focus Mode would click on median to see what

influences median (which included median_countries via pop_total), but then not

click on the respective components of its calculation. In the latter case, participants

would simply ignore or not notice that median_countries was missing from the slice.

Two participants even explicitly mentioned this fact:

• P3 (after completing Median): “Focus Mode does show me that it is inconsis-

tent, cont_countries is not shown here, so we should know those two are different.

I looked at the suffix in the two variables “countries” and thought they were the

same. Maybe if I got used to Focus Mode it could help.”

• P10 (in interview): “If I clicked on the right place in the population calculation, I

should have noticed that median_countries wasn’t highlighted. [...] but I didn’t

observe that while I was doing it. That could be because I’m not used to Focus

Mode, and so it doesn’t register in my head that this isn’t lit up.”

This outcome is concordant with the theory that code with no information flow

to a selection can still be relevant to that selection. It suggests that either users need

more training with Focus Mode to detect these subtler cases (as both participants

mentioned), or that fading out code may not be an appropriate visualization for code

with no information flow to the selection, and alternative visualizations should be

explored.
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Command-line task

The bug in this task is that the code which builds an error for a command-line parser

incorrectly references a version of the parser that does not register which fields have

already been parsed, leading to an incorrect error message. This task was both the

largest and subtlest of the three, and subsequently only 3 out of 18 participants

managed to complete it (2/12 with Focus Mode, 1/6 without). Completion times

were not statistically significantly different between the two groups.

This task provides mixed evidence for the utility of Focus Mode. One one hand,

participants with Focus Mode were able to effectively ignore some irrelevant code

in the task. Specifically, the function ErrorType::to_string contains code defining

both the cause of the CLI error and the context of the CLI error, where only the latter

is relevant to the bug. Two participants not using Focus Mode spent 90 seconds

inspecting the irrelevant 36 LOC about the error cause, while all participants using

Focus Mode spent a maximum of 10 seconds inspecting this code.

However, the root cause in the Cli::parse function went largely unnoticed. We

observed that participants generally assumed that the bug would be in the “core logic”

of the function, where arguments are actually parsed, and not in the “header” of the

function, where variables used in the function (including the build_error closure) are

initialized. When participants did e.g. focus on build_error, they did not closely

inspect its focus region and notice a lack of connection to cli, comparable to the

issue in Median. In such situations, techniques such as fault localization [135] may

complement Focus Mode in guiding the user to focus on buggy lines.

6.2.3 Interview results

Finally, we report on a few recurring themes that arose in post-debugging interviews,

summarized in Table 6.2.

Focus Mode as a flow visualization

Several participants reacted positively to Focus Mode because it visualized a dataflow-

oriented representation of a function rather than the traditional control-flow order:
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Theme Representative quote
Participants want a
flow visualization

“‘Being able to see [flows] in the code without having to look
at error messages and having that kind of instant feedback
is really nice, because quite frankly that’s the purpose of
Rust.”

Participants found a
trust/learning curve

“Initially it’s very hard to trust the extension, you feel like
it might be leaving something out. You maybe double guess
the extension.”

Participants quickly
acclimated to Focus
Mode

(on a task without Focus Mode) “Oh my god, I’m clicking
things as if I were using Focus Mode. Ok, back to basics.”

Participants disagree
on the best use case

“I think it would be very helpful if you have a new-to-you
codebase” / “I can imagine it being more useful if I had just
written the code, whereas looking at unfamiliar code I am
still trying to look at every single line”

Table 6.2: Summary of takeaways from participants’ post-debugging interviews.

• P0: “The main thing is that it’s helping you construct a flow graph of the function

by letting you look at slices of that flow graph.”

• P1: “It’s useful to see all those [dataflow] interactions. Without that, you just have

to in your head keep track of all that stuff.”

• P2: “It’s nice to be able to see dataflow, because quite frankly that’s the purpose

of Rust. Not THE purpose, but the compiler tries so hard to internalize this notion

of ownership and borrowing, so being able to visually see it in the code without

having to look at error messages and having that kind of instant feedback is really

nice.”

However, participants disagreed about exactly what kind of information they pre-

ferred to have visualized. For example, P14: “it highlights the transitive dependencies

of the thing you’re clicking on. For me, it seems like the thing I would reach for more

is direct dependencies.” Participants also differed on whether/how they wanted to

distinguish forward and backward slices:

• P1: “I definitely like the fact that it handles forward and backward dependencies

depending on where you’ve highlighted it.”
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• P9: “Being able to control what influences me versus what do I influence, both

before and after, might be kind of useful.”

• P13: “It might be beneficial to highlight things before and after in different colors.

If code influences the thing you’re clicking on, then it’s highlighted in orange, and

otherwise in blue or something.”

Focus Mode’s learning curve

Several participants, especially those with fewer years of programming experience,

felt that Focus Mode was either confusing or not trustworthy.

• P3: “I found it kind of confusing to use at first.”

• P4: “Initially it’s very hard to trust the extension, because you feel like it might

be leaving something out. You maybe double guess the extension.”

• P13 - “I found it a little confusing before you explained it at the start what is

exactly highlighted. I clicked some things, and sometimes everything is highlighted,

or something is highlighted that I don’t expect.”

These participants in particular called out the location-sensitivity of the analysis

as confusing. Most IDE tools visualize location-insensitive program analyses, such as

type checking, so clicking on the same variable at different points in a function will

always show the same result. But Focus Mode gives different answers based on the

information flow at the point of selection, which surprised these participants.

Subconsciously acclimating to Focus Mode

No participants reported that Focus Mode was overly intrusive or hard to read

visually. Conversely, several participants reported that Focus Mode faded into the

background. For example, P5: “The funny thing is that I didn’t really realize I was

using it. I think I was still relying on it when it was on. You don’t really notice it

once it’s on. I guess it’s quite nice in that sense. The simple fact that you just see

the relevant code, and the rest is mixed into the background.”
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Additionally, for participants whose first two tasks involved using Focus Mode

and third task did not, they frequently reported during the third task a surprising

attempt to use Focus Mode despite it being disabled:

• P1 (in interview): “In the back of my head, I’m already waiting for this to highlight

stuff. Amazing how quickly your brain will get lazy.”

• P2 (solving Median): “You see, I had an instinct to click [the return type] here

to see where we are returning from.”

• P11 (in interview): “I found myself clicking on median and looking to see if it was

connected to median_countries. And the addon wasn’t there.”

• P15 (solving Median): “It looks like we’re returning the wrong value there. [selects

the return value and waits ] Oh my god, I’m clicking things as if I were using Focus

Mode. Ok, back to basics.”

• P16 (solving Url): “[selects chars and waits ] Ah, now I see that I got a little bit

used to having the relevant parts highlighted.”

These responses suggest that even after a short time, programmers can quickly and

even subconsciously acclimate to incorporating Focus Mode into their debugging

process.

Hypothesized use cases for Focus Mode

Several participants speculated about scenarios in their daily practice where Focus

Mode could help. However, participants often disagreed on e.g. whether Focus

Mode is more or less useful after you understand the high-level structure of a code-

base:

• P6: “I think it would be very helpful if you have a new-to-you codebase, and you’re

trying to figure out how something is built up from a series of mutations.”

• P9: “I can imagine it being more useful if I had just written the code, whereas

looking at unfamiliar code I am still trying to look at every single line and get a

rough idea of what’s going on. And so it’s not as helpful in that situation.”
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• P15: “If you’re going into a codebase and already have the background semantic

knowledge, then I saw tangible benefits in bootstrapping in where we left off.”

This disagreement points towards a direction for future work: examining the role

of slicing in codebases with different levels of familiarity to the programmer.

6.2.4 Discussion

Our two main research questions were:

1. Could developers successfully incorporate Focus Mode into their debugging pro-

cess?

2. For which scenarios can Focus Mode help programmers find relevant code?

For the first question, this study provides compelling evidence that developers

could quite easily incorporate Focus Mode into their debugging process. As dis-

cussed in Section 6.2.3, many participants reported (unprompted!) that they had

unexpectedly trying to use Focus Mode on a task without the tool. Participants

with less programming experience would likely need more practice to fully understand

how to use Focus Mode, as discussed in Section 6.2.3.

For the second question, the two main scenarios where Focus Mode helped

programmers were (1) ignoring large blocks of irrelevant code, as with the irrelevant

URL components in Url and the error building in Command-line, and (2) drawing

attention to unexpected mutations, as with path in Url. The former scenario is

likely to occur in many programs that have multiple concerns mixed in to a single

function. The latter scenario is especially pernicious in imperative programs where

pointers, closures, and other forms of indirection conspire to make mutations hard to

spot.

However, Focus Mode was not effective when relevant code was outside the slice

of an object of inquiry, as in Median and parts of Command-line. This suggests

that the foundational framing of a slice as “relevant code”, stemming all the way

to Weiser’s original work [1984], is misleading as it conflates a PL-theoretic concept

(runtime relevance) with a cognitive concept (mental relevance). The expected usage
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of a program slicer should not be to simply ignore code outside of a slice, and future

work should investigate slice visualizations that facilitate comparisons of code both

within and outside of a slice.

6.3 Dataset analysis

The user study demonstrates that Focus Mode holds promise in helping program-

mers find relevant code, but that promise is contingent on the style of code being

analyzed. Some participants explicitly echoed that concern:

• P2: “This is very different from code that I would normally write. This is a much

more imperative style, and my instinct is that Focus Mode would be better on

this imperative-style code.”

• P15: “One thing I worry about is in practice, how many of the functions I write

have a lot of splitting control flow, so returning things that aren’t depending on one

another. I tried using Focus Mode a little bit on some Rust code I’m working

on now. Because it’s more recursive in nature, it didn’t seem to cut out as much

of the code as I’d hoped.”

These concerns are comparable to those raised by Parnin and Orso [137] that

programs slices may be too big to be useful. Therefore we tried to answer the question:

if you randomly selected a variable in any function in an arbitrary Rust codebase,

how much code would you expect to be filtered out by Focus Mode?

6.3.1 Methodology

Our methodology for answering this question is relatively simple: compute many

slices in existing codebases, and analyze how much code is eliminated in each slice.

For a dataset of Rust codebases, we reuse the same dataset from the evaluation of

Flowistry as it represents a large and diverse set of code styles and applications

written in Rust. See Table 5.1 again for the specific crates used and statistics about

them.
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For each codebase, for each function in the codebase, and for each selectable

program object (variable, expression, function parameter, etc.) in the function, we

compute the forward, backward, and combined (both directions) slice of that object.

Note that an instruction can be in both a variable’s forward and backward slice in

the event of loops, so the size of a combined slice may be less than the sum of the

size of its parts. In total, we generated 284,107 slices, multiplied by three directions

to make 852,321 data points.

Unlike Section 5.4, where we measured the size of code in number of IR instruc-

tions, our goal is to approximate how much code a person would see faded out if

they actually opened the codebase in an IDE. Therefore we measure the size of a

focus region and its containing function in significant lines of code, i.e. lines of code

that contain at least one token (not whitespace or comments). To compare slice sizes

across functions with different sizes, we represent slice sizes as a fraction of the total

SLOC in the containing function. For example, a slice containing 5 LOC in a function

with 20 LOC has a fractional size 0.25.

6.3.2 Results

The distribution of slice sizes is shown in Figure 6.5-top-left. Because the distributions

are not normal, we will summarize them with their median and interquartile range

(25th percentile to 75th percentile). Overall, the slice sizes were: backward 32%

(8%-70%), forward 50% (15%-93%), and combined 84% (50%-100%).

We would expect smaller functions to have fewer independent concerns, and there-

fore see larger slices in smaller functions. To test this hypothesis, we partitioned the

data into small and large functions based on the median function size of 55 LOC.

Figure 6.5-top-right shows the distribution of slice sizes for small and large functions.

Indeed, median slice sizes were smaller for large functions. Backward slices had a

size distribution of 36% (11%-78%) vs. 15% (3%-42%) for small functions and large

functions, respectively. Forward slices were 60% (20%-100%) vs. 29% (5%-71%), and

combined slices 89% (58%-100%) vs. 63% (24%-91%). The difference in medians is

statistically significant (p < 0.001) for all three directions by a Kruskal-Wallis H-test.
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Figure 6.5: The distribution of slice sizes as a fraction of the containing function,
faceted by direction (top-left) and further faceted by function size (top-right) and
crate (bottom). Lower is better — for example, the forward slice of the return value
and the backward slice of a function parameter includes 0% of code.
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To estimate the effect of crate-level code style on slice size, we analyzed the dis-

tribution of slice sizes per crate, shown in Figure 6.5-bottom. Consistent with the

crate-level analysis in Section 5.4.4, there is indeed some notable inter-crate variance.

Slices in rayon are, on average, larger than slices in rav1e, likely due to the fact that

rayon has on average much smaller functions. But slices still excluded a considerable

amount of code in most crates.

6.3.3 Discussion

These results show that modular slices can be quite effective at eliminating code.

The median backward slice in a large function was only 15% of the total LOC in that

function — a very substantial reduction! Backward slices are on average smaller than

forward slices, which suggests that the information flow graph of most computations

will branch outward (e.g. a tree with a root branching to many leaves) more than

inward (e.g. many leaves reducing to a single root).

The distributions of slice sizes exhibit significant variance, regardless of crate or

function size. A finer granularity analysis of code styles or information flow topolo-

gies might explain this variance – is the variance due to straight-line vs. branching

computation? Sequential vs. iterative control flow? Future work should explore this

question to help programmers better understand when they would expect a tool like

Focus Mode to be of greatest help.

A concern about these results is whether program slicing is only useful for messy

code. One cause of large functions is when many responsibilities are lumped into a

single location, whereas a better code style might factor these responsibilities into

several smaller functions. One possible direction would be to make Focus Mode

work interprocedurally, i.e. compute and visualize slices across function boundaries.

But working with code fragmented across many functions is a known challenge for

programmers [93], so an alternative could be to combine modular slicing with a partial

evaluation tool that inline and simplify code from called functions [138].
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Conclusions and Future Work

In this dissertation, I have shown that program slicing is both technically feasible

and empirically useful in helping programmers find relevant code. I reinforced the

cognitive basis for slicing with the experiments in Chapter 3, showing that working

memory limitations influence core programming tasks like tracing. I provided a new

theoretical foundation for slicing in ownership-based languages through the informa-

tion flow analysis in Chapter 5. And finally, I showed in Chapter 6 that a Rust slicer

can help programmers find relevant code while debugging, with some notable caveats.

This dissertation further supports the argument that cognitive psychology and

programming language theory can only together provide a principled foundation for

the design of programming tools. As shown in Chapter 2, pure cognitive psychology

enables us to uncover facts about how people think when programming, but these

facts are difficult to apply in isolation. As shown in Chapter 4, pure programming

language theory enables us to design an infinite array of mechanisms for analyzing

program properties, but these mechanisms won’t be useful to programmers without

tailoring them to cognition.

To that end, my research points to several directions for future work that span

both disciplines.

121
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7.1 Cognitive Design Principles for Programming

Working memory is just one of many possible lenses for understanding the practice

of programming. Future work should explore how every relevant aspect of cognition

influences programming, from micro-tasks like tracing a line of code to macro-tasks

like implementing a complex high-performance system. Particular focus should be

given on translating cognitive insights into principles that can meaningfully inform

the design of practical tools. Here are two areas I think are particularly promising:

Perception and information visualization. Despite decades of research on soft-

ware visualization, most programmers use very few visualizations today beyond the

IDE features outlined in Figure 1.1 [139, 140]. Yet, the need for visualization is still

present: a modern codebase contains an overwhelming amount of information for a

person to comprehend. Moreover, researchers in information visualization have suc-

cessfully applied theories of perception to generate design principles for all manner

of graphics: data visualizations [5], route maps [141], assembly instructions [142], and

more.

For example, many emerging programming languages have complex type systems.

These type systems operate by combining explicit information in a program’s syn-

tax with inferred facts and constraints, and checking for violations of various safety

properties. A common experience in these languages is a “fight” with the compiler,

i.e. iteratively writing a program, being rejected by the compiler, and rewriting to

try and satisfy its rules.

I believe that a core challenge in this setting is that much of the relevant informa-

tion may be invisible to the programmer — they must deduce it and hold in working

memory. Very little work has explored how visualizations of these constraints could

facilitate the high-level inferences that a programmer wants to make: why is my pro-

gram broken, and how do I fix it? Identifying principles for visualizations of statically

inferred program properties would be an invaluable contribution toward improving

the accessibility of the next generation of programming languages to all programmers.
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Abstraction and API design. Abstraction is both a cognitive and technical phe-

nomenon: programmers mentally build abstractions to think about the segments

of a problem domain or semantics of a programming language. Programmers also

build technical abstractions, usually in the form of APIs: functions, data structures,

libraries, and frameworks that encapsulate a way of thinking about a domain.

The gap between between cognitive and technical abstractions is a known usability

challenge with APIs, as shown by Robillard and Deline [143]:

“When professional developers like the ones in our studies learn a new

API, they struggle not so much in the mechanics of using the API, but in

understanding how the API relates upwards towards its problem domain

and downwards towards its implementation.”

Conversely, the proliferation of APIs advertised as being “for humans” shows the

value that programmers place on technical abstractions that mirror the way they

think about a given problem.

Cognitive psychology has a long history of research about the formation and ap-

plication of concepts, categories, analogies, and other cognitive abstractions. These

ideas have been linked to programming-relevant domains — for example, psycholo-

gists Lakoff and Núñez argue in Where Mathematics Comes From [144] that many

advances in mathematics can be traced back to the evolution of metaphors that people

used to conceptualize mathematical objects like numbers and sets.

Therefore I believe that psychological research may provide significant insight into

the relationship between cognitive and technical abstractions in programming. For

example, is it possible to argue precisely why one API is a “better” model of a domain

than another in purely cognitive terms? Are there principles for how API designers

can document their APIs so as to facilitate the formation of mental abstractions that

mirror the technical ones? Programmers stand to benefit greatly from answers to

these questions.
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Figure 7.1: A prototype IDE extension that combines information flow with graph
community analysis to identify clusters of code. Each cluster is highlighted in a
different color. This clustering shows, for example, that lines 12-20 are a distinct
logical chunk from lines 7-10 and 23-33, even though they are in a sequential block.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 125

7.2 Information Flow Beyond Security

I have demonstrated that my system for ownership-based information flow, Flow-

istry, has clear and immediate implications for building a program slicer, and could

certainly be adapted for the traditional application of information flow control. But I

am equally excited by the potential applications of information flow analysis beyond

security, such as in compiler optimizations or IDE refactoring. Here are two particular

applications I’ve considered:

Interactive code decomposition. Codebases evolve over time, grow in scope, and

churn through maintainers. In the process, functions often acquire many different

responsibilities until being refactored into smaller functions. Currently, identifying

when and how to decompose a function is an expert skill simply gained through

experience.

One potential application of information flow analysis is to automatically identify

the functional sub-units of a given program. The hypothesis is that code which is

more related to each other has more internal dependencies. Then a tool can statisti-

cally analyze the average connectivity of nodes within the information flow graph to

distinguish clusters of functionality.

I have implemented a prototype of this idea, shown in Section 7.2. The prototype

uses modularity maximization to identify communities within the information flow

graph, and then highlights the communities in the IDE. In a more complete proto-

type, a user would be able to interactively sweep through different granularities of

decomposition, adjust individual blocks, and then refactor each block into a function

with its own name. I believe tools like this would help maintainers of legacy codebases

in sorting through complex intra-function dependency graphs.

Compiler optimizations. For languages with simple type systems like C and

C++, optimizing compilers must make conservative assumptions about the behavior

of code. For example, if a C function has a type signature void f(int* x, int* y)

then x and y may possibly point to the same data, and so reads and writes cannot

be freely reordered. However, if a Rust function has a type signature
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fn f(x: &mut i32, y: &mut i32), then x cannot be an alias of y by the rules of

ownership, and so a compiler can more aggressively optimize instructions involving

one but not the other (see Jung et al. [145] for the details).

Information flow analysis is essentially about constructing the dependency graph

of the instructions in a function. Therefore a compiler could theoretically use a tool

like Flowistry to reorder instructions, automatically parallelize blocks of code, and

eliminate dead code with greater precision than before. Future work can investigate

the magnitude of potential performance improvements to be gained with information-

flow-guided optimizations.

7.3 Slicing at Scale

Finally, the program slicer itself should also the subject of future work. The study

in Chapter 6 only focused on programmers reading small, self-contained program.

This style of experiment is good for finding patterns of experience, but it reduces the

ecological validity of the findings since most programmers do not work on small, self-

contained programs. Therefore one next step is to study professional Rust developers

using Focus Mode in their day-to-day work.

Based on the interviews with user study participants in Section 6.2.3, I can antici-

pate a number of possible refinements to Focus Mode that would help users in large

codebases. In codebases where functionality is factored into small units, then the set

of code relevant to a programmer’s task may cross dozens of functions and files. A

modular slicer will probably not help a programmer in this setting. One potentially

useful mechanism may be progressively enlarging a slice as a user jumps from one

definition to the next.

Part of this study should also focus on building a theory of relevance in pro-

gramming. For example, the codebase is just one of many information sources that

a professional developer uses — they also have design documents, reference docu-

mentation, customer communications, and more. The slicers of the future would

ideally capture the entire vertical of information: everything a programmer needs to

accomplish their task.
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